POJ 1769 Minimizing maximizer 动态规划 + 线段树

2023-12-17 19:20

本文主要是介绍POJ 1769 Minimizing maximizer 动态规划 + 线段树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目大意

maximizer是一个排序的软件,可以输出 n 个数字中最大的那个。

它实现的思路是基于多个排序器形成的管道,第一个排序器排序的输出交给第二个排序器,第二个排序器进行排序的输出交给第三个排序器,最终第n个排序器排好后的最后一个元素就是源输入中最大的那个。

每个排序器的可以对输入的数列的一部分区间进行排序,其余部分不做处理。

观察得知,maximizer去掉部分的排序器仍然可以正确输出最大的数字,题目要求得出需要的最小的排序器的数量。

二、解题思路

我们不难看出,进行多次区间排序,最终要让最大的元素排在最后,那么这次些区间一定可以覆盖 1 到 n 的全部范围,且这些区间必须按序。

例如对40个数字进行处理,则区间排序顺序可以为[1,10],[10,20],[20,30],[30,40],四次排序过后,最大的元素会被排在最后。

那么本题目类似于找到一个最短的,能够覆盖1 到 n 的上升子序列。

求上升子序列不难想到用动态规划,可以定义一个 n  大小的数组,dp[N]。

dp[i]代表将 [1,i] 的区间全部排序所需的最小的排序器数量。

程序开始时,将dp[1]设置为0,循环读入每个区间 L,R,循环内执行操作

1、找出 dp[L]到dp[R]的最小值 pre(将[1,L]的位置排好序的最小消耗)

2、找出 dp[R]当前的值 crt

如果 pre + 1 < crt,则 更新 dp[R]位置为 pre + 1(将[1,R]的位置排好序的最小消耗)

最终输出 dp[N]位置的值即可

因为需要找出 dp[L]到dp[N]的最小值,所以dp数组可以用线段树实现,更新值的时候同步更新父节点,便于区间内快速找最值。

(我为了方便,代码让有效数组都从0开始,且区间都为左闭右开)

三、代码

#include <iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
int dat[131072];
int n, m;
void init()
{for (int i = 0; i < 131072; i++){dat[i] = m;}
}
int query(int _l, int _r, int i, int l, int r)
{if (_l >= r || _r <= l){return INF;}else if (l >= _l && r <= _r){return dat[i];}else{int lch = query(_l, _r, i * 2 + 1, l, (l + r) / 2);int rch = query(_l, _r, i * 2 + 2, (l + r) / 2, r);return min(lch, rch);}
}
void update(int x, int v, int i, int l, int r)
{if (x >= r || x < l){}else if (l == x && r == x + 1){dat[i] = v;int p = i;while (p > 0){p = (p - 1) / 2;dat[p] = min(dat[p * 2 + 1], dat[p * 2 + 2]);}}else{update(x, v, i * 2 + 1, l, (l + r) / 2);update(x, v, i * 2 + 2, (l + r) / 2, r);}
}
void solve()
{int i, j;scanf("%d%d", &n, &m);init();update(0, 0, 0, 0, n);for (int k = 0; k < m; k++){scanf("%d%d", &i, &j);int v = query(i - 1, j, 0, 0, n);int crt = query(j - 1, j, 0, 0, n);if (v + 1 < crt){update(j - 1, v + 1, 0, 0, n);}}printf("%d\n", query(n - 1, n, 0, 0, n));
}
int main()
{solve();return 0;
}

这篇关于POJ 1769 Minimizing maximizer 动态规划 + 线段树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/505551

相关文章

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

基于Nacos实现SpringBoot动态定时任务调度

《基于Nacos实现SpringBoot动态定时任务调度》本文主要介绍了在SpringBoot项目中使用SpringScheduling实现定时任务,并通过Nacos动态配置Cron表达式实现任务的动... 目录背景实现动态变更定时机制配置化 cron 表达式Spring schedule 调度规则追踪定时

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注