本文主要是介绍【STM32F407的DSP教程】第19章 DSP复数运算-共轭,点乘和求模,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547
第19章 DSP复数运算-共轭,点乘和求模
本期教程主要讲解复数运算中的共轭,点乘和模的求解。
目录
第19章 DSP复数运算-共轭,点乘和求模
19.1 初学者重要提示
19.2 DSP基础运算指令
19.3 复数共轭运算(ComplexConj)
19.3.1 函数arm_cmplx_conj_f32
19.3.2 函数arm_cmplx_conj_q31
19.3.3 函数arm_cmplx_conj_q15
19.3.4 使用举例
19.4 复数点乘(ComplexDotProduct)
19.4.1 函数arm_cmplx_dot_prod_f32
19.4.2 函数arm_cmplx_dot_prod_q31
19.4.3 函数arm_cmplx_dot_prod_q15
19.4.4 使用举例
19.5 复数求模 ComplexMag
19.5.1 函数arm_cmplx_mag_f32
19.5.2 函数arm_cmplx_mag_q31
19.5.3 函数arm_cmplx_mag_q15
19.5.4 使用举例
19.6 实验例程说明(MDK)
19.7 实验例程说明(IAR)
19.8 总结
19.1 初学者重要提示
- 复数运算比较重要,后面FFT章节要用到,如果印象不深的话,需要温习下高数知识了。
19.2 DSP基础运算指令
本章用到的DSP指令在前面章节都已经讲解过。
19.3 复数共轭运算(ComplexConj)
这部分函数用于复数共轭运算,公式描述如下:
for(n=0; n<numSamples; n++)
{
pDst[(2*n)+0)] = pSrc[(2*n)+0]; // 实部
pDst[(2*n)+1)] = -pSrc[(2*n)+1]; // 虚部
}
用代数式来表示a+bi的共轭就是a-bi。
19.3.1 函数arm_cmplx_conj_f32
函数原型:
void arm_cmplx_conj_f32(
const float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
函数描述:
这个函数用于浮点数的复位共轭求解。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是求共轭后的数据地址。
- 第3个参数是转换的数据个数。
注意事项:
参数pSrc中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrc[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。函数的输出结果pDst也是按照这个顺序存储的。
19.3.2 函数arm_cmplx_conj_q31
函数原型:
void arm_cmplx_conj_q31(
const q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
函数描述:
这个函数用于定点数Q31的复数共轭求解。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是求共轭后的数据地址。
- 第3个参数是转换的数据个数。
注意事项:
- 数组pSrc中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrc[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。函数的输出结果pDst也是按照这个顺序存储的。
- 这个函数使用了饱和运算。数值0x80000000由于饱和运算(源码中的__QSUB(0, in))将变成0x7FFFFFFF。
19.3.3 函数arm_cmplx_conj_q15
函数原型:
void arm_cmplx_conj_q15(
const q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
函数描述:
这个函数用于定点数Q15的复数共轭求解。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是求共轭后的数据地址。
- 第3个参数是转换的数据个数。
注意事项:
- 数组pSrc中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrc[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。函数的输出结果pDst也是按照这个顺序存储的。
- 这个函数使用了饱和运算。数值0x8000由于饱和运算(源码中的__QSAX(0, in1))将变成0x7FFFF。
19.3.4 使用举例
程序设计:
/* ********************************************************************************************************* * 函 数 名: DSP_Fill * 功能说明: 数据填充 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void DSP_Fill(void) {float32_t pDst[10];uint32_t pIndex;q31_t pDst1[10];q15_t pDst2[10];q7_t pDst3[10];arm_fill_f32(3.33f, pDst, 10);for(pIndex = 0; pIndex < 10; pIndex++){printf("arm_fill_f32: pDst[%d] = %f\r\n", pIndex, pDst[pIndex]);}/*****************************************************************/arm_fill_q31(0x11111111, pDst1, 10);for(pIndex = 0; pIndex < 10; pIndex++){printf("arm_fill_q31: pDst1[%d] = %x\r\n", pIndex, pDst1[pIndex]);}/*****************************************************************/arm_fill_q15(0x1111, pDst2, 10);for(pIndex = 0; pIndex < 10; pIndex++){printf("arm_fill_q15: pDst2[%d] = %d\r\n", pIndex, pDst2[pIndex]);}/*****************************************************************/arm_fill_q7(0x11, pDst3, 10);for(pIndex = 0; pIndex < 10; pIndex++){printf("arm_fill_q7: pDst3[%d] = %d\r\n", pIndex, pDst3[pIndex]);}/*****************************************************************/printf("******************************************************************\r\n"); }/* ********************************************************************************************************* * 函 数 名: DSP_CONJ * 功能说明: 复数求共轭 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void DSP_CONJ(void) {uint8_t i;float32_t pSrc[10] = {1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 3.1f, 4.1f, 4.1f, 5.1f, 5.1f};float32_t pDst[10];q31_t pSrc1[10] = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5};q31_t pDst1[10];q15_t pSrc2[10] = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5};q15_t pDst2[10];/***浮点数共轭*******************************************************************************/arm_cmplx_conj_f32(pSrc, pDst, 5);printf("***浮点数共轭********************************************\r\n");for(i = 0; i < 5; i++){printf("pSrc[%d] = %f %fj pDst[%d] = %f %fj\r\n", i, pSrc[2*i], pSrc[2*i+1], i, pDst[2*i],pDst[2*i+1]);}/***定点数共轭Q31*******************************************************************************/printf("***定点数共轭Q31*****************************************\r\n");arm_cmplx_conj_q31(pSrc1, pDst1, 5);for(i = 0; i < 5; i++){printf("pSrc1[%d] = %d %dj pDst1[%d] = %d %dj\r\n", i, pSrc1[2*i], pSrc1[2*i+1], i, pDst1[2*i],pDst1[2*i+1]);}/***定点数共轭Q15*******************************************************************************/printf("***定点数共轭Q15*****************************************\r\n");arm_cmplx_conj_q15(pSrc2, pDst2, 5);for(i = 0; i < 5; i++){printf("pSrc2[%d] = %d %dj pDst2[%d] = %d %dj\r\n", i, pSrc2[2*i], pSrc2[2*i+1], i, pDst2[2*i],pDst2[2*i+1]);} }
实验现象:
19.4 复数点乘(ComplexDotProduct)
这部分函数用于复数共轭运算,公式描述如下:
realResult = 0;
imagResult = 0;
for (n = 0; n < numSamples; n++) {
realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1]; //实部
imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0]; //虚部
}
用代数式来表示复数乘法就是:
(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
19.4.1 函数arm_cmplx_dot_prod_f32
函数原型:
void arm_cmplx_dot_prod_f32(
const float32_t * pSrcA,
const float32_t * pSrcB,
uint32_t numSamples,
float32_t * realResult,
float32_t * imagResult)
函数描述:
这个函数用于浮点数的复数点乘。
函数参数:
- 第1个参数是源数据A地址。
- 第2个参数是源数据B地址。
- 第3个参数是点乘的数据个数。
- 第4个参数是点乘后的实数地址。
- 第5个参数是点乘后的虚数地址。
注意事项:
数组pSrcA和pSrcB中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而输出结果的实部和虚部是分开存储的。
19.4.2 函数arm_cmplx_dot_prod_q31
函数原型:
void arm_cmplx_dot_prod_q31(
const q31_t * pSrcA,
const q31_t * pSrcB,
uint32_t numSamples,
q63_t * realResult,
q63_t * imagResult)
函数描述:
这个函数用于定点数Q31的复数点乘。
函数参数:
- 第1个参数是源数据A地址。
- 第2个参数是源数据B地址。
- 第3个参数是点乘的数据个数。
- 第4个参数是点乘后的实数地址。
- 第5个参数是点乘后的虚数地址。
注意事项:
- 数组pSrcA和pSrcB中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而输出结果的实部和虚部是分开存储的。
- 这个函数的内部使用了64累加器,1.31格式数据乘以1.31格式数据结果就是2.62格式,这里我们将所得结果右移14位,那么数据就是16.48格式。由于加数是不支持饱和运算,所以只要numSamples的个数小于32768就不会有溢出的危险。
19.4.3 函数arm_cmplx_dot_prod_q15
函数原型:
void arm_cmplx_dot_prod_q15(
const q15_t * pSrcA,
const q15_t * pSrcB,
uint32_t numSamples,
q31_t * realResult,
q31_t * imagResult)
函数描述:
这个函数用于定点数Q15的复数点乘。
函数参数:
- 第1个参数是源数据A地址。
- 第2个参数是源数据B地址。
- 第3个参数是点乘的数据个数。
- 第4个参数是点乘后的实数地址。
- 第5个参数是点乘后的虚数地址。
注意事项:
- 数组pSrcA和pSrcB中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而输出结果的实部和虚部是分开存储的。
- 这个函数的内部使用了64累加器,1.15格式数据乘以1.15格式数据结果就是2.30格式,对应到64bit就是34.30,然后将最终的计算结果转换为8.24。
19.4.4 使用举例
程序设计:
/* ********************************************************************************************************* * 函 数 名: DSP_CmplxDotProduct * 功能说明: 复数点乘 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void DSP_CmplxDotProduct(void) {float32_t pSrcA[10] = {1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 3.1f, 4.1f, 4.1f, 5.1f, 5.1f};float32_t pSrcB[10] = {1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 3.1f, 4.1f, 4.1f, 5.1f, 5.1f};float32_t realResult;float32_t imagResult;q31_t pSrcA1[10] = {1*268435456, 1*268435456, 2*268435456, 2*268435456, 3*268435456, 3*268435456, 4*268435456, 4*268435456, 5*268435456, 5*268435456};q31_t pSrcB1[10] = {1*268435456, 1*268435456, 2*268435456, 2*268435456, 3*268435456, 3*268435456, 4*268435456, 4*268435456, 5*268435456, 5*268435456};q63_t realResult1;q63_t imagResult1;q15_t pSrcA2[10] = {5000, 10000, 15000, 20000, 25000, 5000, 10000, 15000, 20000, 25000};q15_t pSrcB2[10] = {5000, 10000, 15000, 20000, 25000, 5000, 10000, 15000, 20000, 25000};q31_t realResult2;q31_t imagResult2;/***浮点数点乘*******************************************************************************/arm_cmplx_dot_prod_f32(pSrcA, pSrcB, 5, &realResult, &imagResult);printf("arm_cmplx_dot_prod_f32:realResult = %f imagResult = %f\r\n", realResult, imagResult);/***定点数点乘Q31*******************************************************************************/arm_cmplx_dot_prod_q31(pSrcA1, pSrcB1, 5, &realResult1, &imagResult1);printf("arm_cmplx_dot_prod_q31:realResult1 = %lld imagResult1 = %lld\r\n", realResult1, imagResult1);/***定点数点乘Q15*******************************************************************************/arm_cmplx_dot_prod_q15(pSrcA2, pSrcB2, 5, &realResult2, &imagResult2);printf("arm_cmplx_dot_prod_q15:realResult2 = %d imagResult2 = %d\r\n", realResult2, imagResult2); }
实验现象:
19.5 复数求模 ComplexMag
这部分函数用于复数求模,公式描述如下:
for (n = 0; n < numSamples; n++) {
pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
}
用代数式来表示复数乘法就是: 。
19.5.1 函数arm_cmplx_mag_f32
函数原型:
void arm_cmplx_mag_f32(
const float32_t * pSrc,
float32_t * pDst,
uint32_t numSamples)
函数描述:
这个函数用于浮点数类型的复数求模。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是求模后的数据地址。
- 第3个参数是要求解的复数个数。
注意事项:
数组pSrcA中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而模值的结果存到到pDst里面。
19.5.2 函数arm_cmplx_mag_q31
函数原型:
void arm_cmplx_mag_q31(
const q31_t * pSrc,
q31_t * pDst,
uint32_t numSamples)
函数描述:
这个函数用于定点数Q31类型的复数求模。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是求模后的数据地址。
- 第3个参数是要求解的复数个数。
注意事项:
- 数组pSrcA中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而模值的结果存到到pDst里面。
- 1.31格式的数据乘1.31格式的数据,并经过移位处理后结果是2.30格式。
19.5.3 函数arm_cmplx_mag_q15
函数原型:
void arm_cmplx_mag_q15(
const q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
函数描述:
这个函数用于定点数Q15类型的复数求模。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是求模后的数据地址。
- 第3个参数是要求解的复数个数
注意事项:
- 数组pSrcA中存储的数据格式是(实部,虚部,实部,虚部……………),一定要按照这个顺序存储数据,比如数据1-j,j,2+3j这个三个数在数组中的存储格式就是:pSrcA[6] = {1, -1, 0, 1, 2, 3}。(注意第三个数据是0)。而模值的结果存到到pDst里面。
- 1.15格式的数据乘1.15格式的数据,并经过移位处理后结果是2.14格式。
19.5.4 使用举例
程序设计:
/* ********************************************************************************************************* * 函 数 名: DSP_CmplxMag * 功能说明: 复数求模 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void DSP_CmplxMag(void) {uint8_t i;float32_t pSrc[10] = {1.1f, 1.1f, 2.1f, 2.1f, 3.1f, 3.1f, 4.1f, 4.1f, 5.1f, 5.1f};float32_t pDst[10];q31_t pSrc1[10] = {1*268435456, 1*268435456, 2*268435456, 2*268435456, 3*268435456, 3*268435456, 4*268435456, 4*268435456, 5*268435456, 5*268435456};q31_t pDst1[10];q15_t pSrc2[10] = {5000, 10000, 15000, 20000, 25000, 5000, 10000, 15000, 20000, 25000};q15_t pDst2[10];/***浮点数求模*******************************************************************************/arm_cmplx_mag_f32(pSrc, pDst, 5);for(i = 0; i < 5; i++){printf("pDst[%d] = %f\r\n", i, pDst[i]);}/***定点数求模Q31*******************************************************************************/arm_cmplx_mag_q31(pSrc1, pDst1, 5);for(i = 0; i < 5; i++){printf("pDst1[%d] = %d\r\n", i, pDst1[i]);}/***定点数求模Q15*******************************************************************************/arm_cmplx_mag_q15(pSrc2, pDst2, 5);for(i = 0; i < 5; i++){printf("pDst2[%d] = %d\r\n", i, pDst2[i]);} }
实验现象:
19.6 实验例程说明(MDK)
配套例子:
V7-214_DSP复数运算(共轭,点乘和求模)
实验目的:
- 学习DSP复数运算(共轭,点乘和求模)
实验内容:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打函数DSP_CONJ的输出数据。
- 按下按键K2,串口打函数DSP_CmplxDotProduct的输出数据。
- 按下按键K3,串口打函数DSP_CmplxMag的输出数据。
使用AC6注意事项
特别注意附件章节C的问题
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
详见本章的3.4 4.4,5.4小节。
程序设计:
系统栈大小分配:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) {/* STM32F407 HAL 库初始化,此时系统用的还是F407自带的16MHz,HSI时钟:- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。- 设置NVIV优先级分组为4。*/HAL_Init();/* 配置系统时钟到168MHz- 切换使用HSE。- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。*/SystemClock_Config();/* Event Recorder:- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。- 默认不开启,如果要使能此选项,务必看V5开发板用户手册第8章*/ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */EventRecorderInitialize(EventRecordAll, 1U);EventRecorderStart(); #endifbsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */bsp_InitTimer(); /* 初始化滴答定时器 */bsp_InitUart(); /* 初始化串口 */bsp_InitExtIO(); /* 初始化扩展IO */bsp_InitLed(); /* 初始化LED */ }
主功能:
主程序实现如下操作:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打函数DSP_CONJ的输出数据。
- 按下按键K2,串口打函数DSP_CmplxDotProduct的输出数据。
- 按下按键K3,串口打函数DSP_CmplxMag的输出数据。
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) {uint8_t ucKeyCode; /* 按键代码 */bsp_Init(); /* 硬件初始化 */PrintfLogo(); /* 打印例程信息到串口1 */PrintfHelp(); /* 打印操作提示信息 */bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 *//* 进入主程序循环体 */while (1){bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 *//* 判断定时器超时时间 */if (bsp_CheckTimer(0)) {/* 每隔100ms 进来一次 */ bsp_LedToggle(2);}ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */if (ucKeyCode != KEY_NONE){switch (ucKeyCode){case KEY_DOWN_K1: /* K1键按下, 求共轭 */DSP_CONJ();break;case KEY_DOWN_K2: /* K2键按下, 求点乘 */DSP_CmplxDotProduct();break;case KEY_DOWN_K3: /* K3键按下, 求模 */DSP_CmplxMag();break;default:/* 其他的键值不处理 */break;}}} }
19.7 实验例程说明(IAR)
配套例子:
V7-214_DSP复数运算(共轭,点乘和求模)
实验目的:
- 学习DSP复数运算(共轭,点乘和求模)
实验内容:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打函数DSP_CONJ的输出数据。
- 按下按键K2,串口打函数DSP_CmplxDotProduct的输出数据。
- 按下按键K3,串口打函数DSP_CmplxMag的输出数据。
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
详见本章的3.4 4.4,5.4小节。
程序设计:
系统栈大小分配:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) {/* STM32F407 HAL 库初始化,此时系统用的还是F407自带的16MHz,HSI时钟:- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。- 设置NVIV优先级分组为4。*/HAL_Init();/* 配置系统时钟到168MHz- 切换使用HSE。- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。*/SystemClock_Config();/* Event Recorder:- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。- 默认不开启,如果要使能此选项,务必看V5开发板用户手册第8章*/ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */EventRecorderInitialize(EventRecordAll, 1U);EventRecorderStart(); #endifbsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */bsp_InitTimer(); /* 初始化滴答定时器 */bsp_InitUart(); /* 初始化串口 */bsp_InitExtIO(); /* 初始化扩展IO */bsp_InitLed(); /* 初始化LED */ }
主功能:
主程序实现如下操作:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打函数DSP_CONJ的输出数据。
- 按下按键K2,串口打函数DSP_CmplxDotProduct的输出数据。
- 按下按键K3,串口打函数DSP_CmplxMag的输出数据。
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) {uint8_t ucKeyCode; /* 按键代码 */bsp_Init(); /* 硬件初始化 */PrintfLogo(); /* 打印例程信息到串口1 */PrintfHelp(); /* 打印操作提示信息 */bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 *//* 进入主程序循环体 */while (1){bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 *//* 判断定时器超时时间 */if (bsp_CheckTimer(0)) {/* 每隔100ms 进来一次 */ bsp_LedToggle(2);}ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */if (ucKeyCode != KEY_NONE){switch (ucKeyCode){case KEY_DOWN_K1: /* K1键按下, 求共轭 */DSP_CONJ();break;case KEY_DOWN_K2: /* K2键按下, 求点乘 */DSP_CmplxDotProduct();break;case KEY_DOWN_K3: /* K3键按下, 求模 */DSP_CmplxMag();break;default:/* 其他的键值不处理 */break;}}} }
19.8 总结
本期教程就跟大家讲这么多,有兴趣的可以深入研究下算法的具体实现。
这篇关于【STM32F407的DSP教程】第19章 DSP复数运算-共轭,点乘和求模的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!