算法通关第十九关-青铜挑战理解动态规划

2023-12-16 13:28

本文主要是介绍算法通关第十九关-青铜挑战理解动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好我是苏麟 , 今天聊聊动态规划 .

动态规划是最热门、最重要的算法思想之一,在面试中大量出现,而且题目整体都偏难一些对于大部人来说,最大的问题是不知道动态规划到底是怎么回事。很多人看教程等,都被里面的状态子问题、状态转移方程等等劝退了。
其实,所谓的状态就是一个数组,动态规划里的状态转移方程就是更新这个数组的方法。这一关,我们先理解动态规划到底怎么回事。

大纲

    • 热身 : 斐波那契数列
    • 路径连环问题
      • 基本问题 : 统计路径总数
      • 用二维数组优化递归
      • 拓展问题 : 最小路径和

热身 : 斐波那契数列

首先来感受一下什么是重复计算记忆化搜索

public class FibonacciTest {public static int count = 0;public static void main(String[] args) {fibonacci(20);System.out.println("count:" + count);}public static int fibonacci(int n) {System.out.println("斐波那契数列");count++;if (n == 0) {return 1;}if (n == 1 || n == 2)return n;else {return fibonacci(n - 1) + fibonacci(n - 2);}}
}

这个就是斐波那契数列,当n为20时,count是21891次。而当n=30 的时候结果是2692537,也就是接270万。如果纯粹只是算斐波那契数列,我们可以直接循环:

    public static int count_2 = 0;public int fibonacci(int n) {if (n <= 2) {count_2++;return n;}int f1 = 1;int f2 = 2;int sum = 0;for (int i = 3; i <= n; i++) {count_2++;sum = f1 + f2;f1 = f2;f2 = sum;}return sum;}

n为30时也不过计算二十几个数的累加,但是为什么采用递归竟然高达270万呢?
因为里面存在大量的重复计算,数越大,重复越多。例如当n=10的时候,我们看下面的结构图就已经有很多重复计算了:
在这里插入图片描述

上面我们在计算f(10)时,可以看到f(9)、f(8)等等都需要计算,这就是重叠子问题。怎么对其优化一下呢?
可以看到这里主要的问题是很多数据都会频繁计算,如果将计算的结果保存到一个一维数组里。把 n 作为我们的数组下标,f(n)作为值,也就是 arr[n] = f(n)。执行的时候如果某人位置已经被计算出来了就更新对应位置的数组值,例如 f(4)算完了,就将其保存到arr[4]中,当后面再次要计算 f(4) 的时候,我们判断f(4)已经计算过,因此直接读取 f(4) 的值,不再递归计算。代码如下:

        public static int[] arr = new int[50];public static int count_3 = 0;Arrays.fill(arr, -1);arr[0] = 1;int fibonacci ( int n){if (n == 2 || n == 1) {count_3++;arr[n] = n;return n;}if (arr[n] != -1) {count_3++;return arr[n];} else {count_3++;arr[n] = fibonacci(n - 1) + fibonacci(n - 2);return arr[n];}}

在上面代码里,在执行递归之前先查数组看是否被计算过,如果重复计算了,就直接读取,这就叫”记忆化搜索“,就这么简单。

路径连环问题

基本问题 : 统计路径总数

描述 :

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

题目 :

LeetCode 62. 不同路径 :

不同路径

在这里插入图片描述
分析 :

我们先从一个3x2的情况来分析:

在这里插入图片描述
我们的目标是从起点到终点,因为只能向右或者向下,从图中可以可以看到:

1.如果向右走,也就是图1的情况,后面是一个3x1的矩阵,此时起点下面的两个灰色位置就不会再访问了,只能从绿色位置一直向下走,只有一种路径。

2.如果是向下走,我们可以看到原始起点右侧的就不能再访问了,而剩下的又是一个2X2的矩阵,也就是从图中绿色位置到红色位置,此时仍然可以选择向右或者向下,一共有两种路径。

所以上面的情况加起来就是一共有3种。

我们再看一下3X3的 :
在这里插入图片描述
可以看到,一个3X3的矩阵下一步就变成了一个3X2或者2X3的矩阵,而总路径数,也是是两者各自的路径之和。
因此,对于一个mxn的矩阵,求路径的方法search(m,n)就是:search(m-1,n)+search(m,n-1);
递归的含义就是处理方法不变,但是问题的规模减少了

解析 :

注意 :递归的方式会超出时间限制

class Solution {public int uniquePaths(int m, int n) {return dp(m,n);}public int dp(int m,int n){if(n == 1 || m == 1){return 1;}return dp(m - 1,n) + dp(m,n - 1);}
} 

用二维数组优化递归

我们来优化递归的问题,研究如何结合二维数组来实现记忆化搜索.

从上面这个树也可以看到在递归的过程中存在重复计算的情况,例如1,1出现了两次,如果是一个NXN的空间,那 1.0 和 0,1 的后续计算也是一样的。从二维数组的角度,例如在位置(1,1)处,不管从(0,1)还是(1,0)到来,接下来都会产生2种走法,因此不必每次都重新遍历才得到结果。

在这里插入图片描述
为此,我们可以采取一个二维数组来进行记忆化搜索,算好的就记录在数组中,也就是这样子:
在这里插入图片描述
每个格子的数字表示从起点开始到达当前位置有几种方式,这样我们计算总路径的时候可以先查一下二维数组有没有记录,如果有记录就直接读,没有再计算,这样就可以大量避免重复计算,这就是记忆化搜索

根据上面的分析,我们可以得到两个规律:
1.第一行和第一列都是1。
2.其他格子的值是其左侧和上方格子之和。对于其他m,n的格子,该结论一样适用的,例如:
在这里插入图片描述
比如图中的4,是有上面的1和左侧的3计算而来,15是上侧的5和左侧的10计算而来。如果用公式表示就是:

在这里插入图片描述

解析 :

class Solution {public int uniquePaths(int m, int n) {int[][] arr = new int[m][n];arr[0][0] = 1;for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(i > 0 && j > 0){arr[i][j] = arr[i - 1][j] + arr[i][j - 1];}else if(i > 0){arr[i][j] = arr[i - 1][j];}else if(j > 0){arr[i][j] = arr[i][j - 1];}}}return arr[m - 1][n - 1];}
} 

拓展问题 : 最小路径和

描述 :

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

题目 :

LeetCode 64. 最小路径和 :

最小路径和 :

在这里插入图片描述
分析 :

这道题是在上面题目的基础上,增加了路径成本概念。由于题目限定了我们只能[往下]或者[往右]移动,因此我们按照当前位置可由哪些位置转移过来 进行分析:

  • 当前位置只能通过[往下] 移动而来,即有f[i][j] = f[i-1][j] + grid[i][j]
  • 当前位置只能通过[往右]移动而来,即有 f[i][j] = f[i][j-1] + grid[i][j]
  • 当前位置既能通过[往下]也能[往右] 移动,即有f[i][j] = min(f[i][j - 1],f[i - 1][j]) + grid[i][j]

二维数组的更新过程,我们可以图示一下:

在这里插入图片描述
我们现在可以引入另外一个概念状态: 所谓状态就是下面表格更新到最后的二维数组,而通过前面格子计算后面格子的公式就叫状态转移方程。如果用数学表达就是:

在这里插入图片描述

所谓的确定状态转移方程就是要找递推关系,通常我们会从分析首尾两端的变化规律来入手。

解析 :

class Solution {public int minPathSum(int[][] grid) {int m = grid.length;int n = grid[0].length;int[][] arr = new int[m][n];for(int i = 0;i < m;i++){for(int j = 0;j < n;j++){if(i == 0 && j == 0){arr[i][j] = grid[i];}else{int top = i - 1 >= 0 ? arr[i - 1][j] + grid[i][j] : Integer.MAX_VALUE; int left = j - 1 >= 0 ? arr[i][j - 1] + grid[i][j] :
Integer.MAX_VALUE;arr[i][j] = Math.min(top,left);}}}return arr[m - 1][n - 1];}
}

这期就到这里下期见 !

这篇关于算法通关第十九关-青铜挑战理解动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500630

相关文章

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.