一些知识点的初步理解_9(独立成分分析-ICA,ing...)

2023-12-16 05:32

本文主要是介绍一些知识点的初步理解_9(独立成分分析-ICA,ing...),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转自http://www.cnblogs.com/tornadomeet/archive/2012/12/30/2839841.html

独立成分分析(后面都用ICA代替)在维基百科中的解释是:一种利用统计原理进行计算的方法它是一个线性变换。这个变换把数据或信号分离成统计独立的非高斯的信号源的线性组合。独立成分分析是盲信号分离(Blind source separation)的一种特例。

  可以感性上对比下ICA和PCA的区别,PCA是将原始数据降维并提取出不相关的属性,可以参考前面博文的介绍:PCA算法学习_1(OpenCV中PCA实现人脸降维)和PCA算法学习_2(PCA理论的matlab实现),而ICA是将原始数据降维并提取出相互独立的属性。我们知道两个随机变量独立则它们一定不相关,但2个随机变量不相关则不能保证它们不独立,因为独立是表示没有任何关系,而不相关只能表明是没有线性关系。且PCA目的是找到这样一组分量表示,使得重构误差最小,即最能代表原事物的特征。ICA的目的是找到这样一组分量表示,使得每个分量最大化独立,能够发现一些隐藏因素。由此可见,ICA的条件比PCA更强些。

  另外,对任意两个相互独立的随机变量s1和s2,有下面的关系式成立:

  

  其中的函数g1和g2是任意的非线性变换(当然也包括了线性变换),也就是说任意的相互独立的随机变量的任意非线性变换后是不相关的。

  ICA的理解可以首先看下面的公式:

   

  我们的目的就是要根据已知向量X(可以把矩阵转换成向量)来求出变换矩阵A和对应的系数列向量s。此时这里只已知了X。并且在求A和s的过程中有下面几个假设:

  1.  s中的每个元素是相互统计独立的。

  2.  s中的每个元素是非高斯分布的。

  3.  变换矩阵A是可逆方阵。

  4.  s中元素的平方和为1.

  至于具体怎么去求解A和s,都是一些数学优化的东西,没怎么看懂,这节就不介绍了(本节目标也只是初步理解下ICA)。

 

  下面来看看ICA模型在图片分析中的理解:

  一般情况下我们的图片都是基于像素表示的,即图片中的每个位置给出一个像素值,然后保存这些像素值即可。不过这里我们采用基于图片basis的表示方法,即对一张图片用少数几个系数和对应的一组basis images表示。Basis image指的是基图片,即其它的图片可以用这些basis image线性组合表示,有点类似基坐标系这一概念。如下图所示,一副图片可以用几个basis image表示:

   

  其数学上的表示可以表示如下:

   

  其中Ai就可以看做是basis image,Si可以看成是basis images图片的系数。当然了经过一系列的数学分析,Si是可以从原图像I(x,y)中求到的,公式如下:

  

 

  参考文献:

     PCA算法学习_2(PCA理论的matlab实现)

     PCA算法学习_1(OpenCV中PCA实现人脸降维)

     独立成分分析(维基百科)

     A. Hyvarinen, J. Hurri, and P. Hoyer. Natural Image Statis-tics. Springer, 2009

     独立成分分析Independent Component Analysis (ICA).ppt

 


这篇关于一些知识点的初步理解_9(独立成分分析-ICA,ing...)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499277

相关文章

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

poj 3692 二分图最大独立集

题意: 幼儿园里,有G个女生和B个男生。 他们中间有女生和女生认识,男生男生认识,也有男生和女生认识的。 现在要选出一些人,使得这里面的人都认识,问最多能选多少人。 解析: 反过来建边,将不认识的男生和女生相连,然后求一个二分图的最大独立集就行了。 下图很直观: 点击打开链接 原图: 现图: 、 代码: #pragma comment(

最大流=最小割=最小点权覆盖集=sum-最大点权独立集

二分图最小点覆盖和最大独立集都可以转化为最大匹配求解。 在这个基础上,把每个点赋予一个非负的权值,这两个问题就转化为:二分图最小点权覆盖和二分图最大点权独立集。   二分图最小点权覆盖     从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。 建模:     原二分图中的边(u,v)替换为容量为INF的有向边(u,v),设立源点s和汇点t