一些知识点的初步理解_9(独立成分分析-ICA,ing...)

2023-12-16 05:32

本文主要是介绍一些知识点的初步理解_9(独立成分分析-ICA,ing...),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转自http://www.cnblogs.com/tornadomeet/archive/2012/12/30/2839841.html

独立成分分析(后面都用ICA代替)在维基百科中的解释是:一种利用统计原理进行计算的方法它是一个线性变换。这个变换把数据或信号分离成统计独立的非高斯的信号源的线性组合。独立成分分析是盲信号分离(Blind source separation)的一种特例。

  可以感性上对比下ICA和PCA的区别,PCA是将原始数据降维并提取出不相关的属性,可以参考前面博文的介绍:PCA算法学习_1(OpenCV中PCA实现人脸降维)和PCA算法学习_2(PCA理论的matlab实现),而ICA是将原始数据降维并提取出相互独立的属性。我们知道两个随机变量独立则它们一定不相关,但2个随机变量不相关则不能保证它们不独立,因为独立是表示没有任何关系,而不相关只能表明是没有线性关系。且PCA目的是找到这样一组分量表示,使得重构误差最小,即最能代表原事物的特征。ICA的目的是找到这样一组分量表示,使得每个分量最大化独立,能够发现一些隐藏因素。由此可见,ICA的条件比PCA更强些。

  另外,对任意两个相互独立的随机变量s1和s2,有下面的关系式成立:

  

  其中的函数g1和g2是任意的非线性变换(当然也包括了线性变换),也就是说任意的相互独立的随机变量的任意非线性变换后是不相关的。

  ICA的理解可以首先看下面的公式:

   

  我们的目的就是要根据已知向量X(可以把矩阵转换成向量)来求出变换矩阵A和对应的系数列向量s。此时这里只已知了X。并且在求A和s的过程中有下面几个假设:

  1.  s中的每个元素是相互统计独立的。

  2.  s中的每个元素是非高斯分布的。

  3.  变换矩阵A是可逆方阵。

  4.  s中元素的平方和为1.

  至于具体怎么去求解A和s,都是一些数学优化的东西,没怎么看懂,这节就不介绍了(本节目标也只是初步理解下ICA)。

 

  下面来看看ICA模型在图片分析中的理解:

  一般情况下我们的图片都是基于像素表示的,即图片中的每个位置给出一个像素值,然后保存这些像素值即可。不过这里我们采用基于图片basis的表示方法,即对一张图片用少数几个系数和对应的一组basis images表示。Basis image指的是基图片,即其它的图片可以用这些basis image线性组合表示,有点类似基坐标系这一概念。如下图所示,一副图片可以用几个basis image表示:

   

  其数学上的表示可以表示如下:

   

  其中Ai就可以看做是basis image,Si可以看成是basis images图片的系数。当然了经过一系列的数学分析,Si是可以从原图像I(x,y)中求到的,公式如下:

  

 

  参考文献:

     PCA算法学习_2(PCA理论的matlab实现)

     PCA算法学习_1(OpenCV中PCA实现人脸降维)

     独立成分分析(维基百科)

     A. Hyvarinen, J. Hurri, and P. Hoyer. Natural Image Statis-tics. Springer, 2009

     独立成分分析Independent Component Analysis (ICA).ppt

 


这篇关于一些知识点的初步理解_9(独立成分分析-ICA,ing...)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/499277

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re