分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测

2023-12-16 02:45

本文主要是介绍分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测

目录

    • 分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.GASF-CNN格拉姆角场-卷积神经网络的数据分类预测(完整源码和数据)
2.自带数据,多输入,单输出,多分类。程序可出分类效果图,混淆矩阵图。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2022及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

模型描述

GASF-CNN(Gramian Angular Summation Field Convolutional Neural Network)是一种基于格拉姆角场和卷积神经网络的数据分类预测方法。

GASF是一种将时间序列数据转换为图像表示的方法。它基于格拉姆角和和求和运算,将时间序列数据转换为二维矩阵。这个转换过程捕捉了时间序列数据的周期性和相对关系,从而提供了更丰富的特征表示。
在这里插入图片描述

卷积神经网络(CNN)是一种常用的深度学习模型,专门用于处理具有网格结构的数据,如图像。CNN通过在输入数据上应用一系列的卷积操作和非线性激活函数,自动学习输入数据中的特征。在图像分类任务中,CNN已经取得了很大的成功。

GASF-CNN结合了GASF和CNN的优势,用于数据分类预测。其基本步骤如下:

输入数据准备:将时间序列数据转换为GASF表示。这涉及将时间序列数据划分为小的时间窗口,并使用GASF算法将每个时间窗口转换为GASF图像。

卷积神经网络构建:建立一个CNN模型,用于从GASF图像中学习特征并进行数据分类。CNN模型通常由卷积层、池化层、全连接层等组成,可以根据具体任务进行设计。

模型训练:使用标记的训练数据对GASF-CNN模型进行训练。通过将GASF图像作为输入,将标签作为目标输出,使用反向传播算法和优化技术(如随机梯度下降)来调整模型参数,以最小化预测错误。

模型预测:使用训练好的GASF-CNN模型对新的未标记数据进行分类预测。将未标记数据转换为GASF图像,并通过CNN模型获取预测结果。

GASF-CNN方法适用于各种类型的时间序列数据分类任务,如股票价格预测、心电图分类、运动识别等。它通过结合GASF的优势和CNN的特征学习能力,提供了一种强大的数据分类预测方法。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据私信博主回复GASF-CNN格拉姆角场-卷积神经网络的数据分类预测
 convolution2dLayer([3, 1], 16)  % 卷积核大小 3*1 生成16张特征图batchNormalizationLayer         % 批归一化层reluLayer                       % Relu激活层convolution2dLayer([3, 1], 32)  % 卷积核大小 3*1 生成32张特征图batchNormalizationLayer         % 批归一化层reluLayer                       % Relu激活层fullyConnectedLayer(1)          % 全连接层regressionLayer];               % 回归层
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法'MaxEpochs', 300, ...                  % 最大训练次数 300'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1'LearnRateDropPeriod', 200, ...        % 经过200次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'Plots', 'training-progress', ...      % 画出曲线'Verbose', false);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/127179100

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

这篇关于分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498821

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核