分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测

2023-12-16 02:45

本文主要是介绍分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测

目录

    • 分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.GASF-CNN格拉姆角场-卷积神经网络的数据分类预测(完整源码和数据)
2.自带数据,多输入,单输出,多分类。程序可出分类效果图,混淆矩阵图。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2022及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

模型描述

GASF-CNN(Gramian Angular Summation Field Convolutional Neural Network)是一种基于格拉姆角场和卷积神经网络的数据分类预测方法。

GASF是一种将时间序列数据转换为图像表示的方法。它基于格拉姆角和和求和运算,将时间序列数据转换为二维矩阵。这个转换过程捕捉了时间序列数据的周期性和相对关系,从而提供了更丰富的特征表示。
在这里插入图片描述

卷积神经网络(CNN)是一种常用的深度学习模型,专门用于处理具有网格结构的数据,如图像。CNN通过在输入数据上应用一系列的卷积操作和非线性激活函数,自动学习输入数据中的特征。在图像分类任务中,CNN已经取得了很大的成功。

GASF-CNN结合了GASF和CNN的优势,用于数据分类预测。其基本步骤如下:

输入数据准备:将时间序列数据转换为GASF表示。这涉及将时间序列数据划分为小的时间窗口,并使用GASF算法将每个时间窗口转换为GASF图像。

卷积神经网络构建:建立一个CNN模型,用于从GASF图像中学习特征并进行数据分类。CNN模型通常由卷积层、池化层、全连接层等组成,可以根据具体任务进行设计。

模型训练:使用标记的训练数据对GASF-CNN模型进行训练。通过将GASF图像作为输入,将标签作为目标输出,使用反向传播算法和优化技术(如随机梯度下降)来调整模型参数,以最小化预测错误。

模型预测:使用训练好的GASF-CNN模型对新的未标记数据进行分类预测。将未标记数据转换为GASF图像,并通过CNN模型获取预测结果。

GASF-CNN方法适用于各种类型的时间序列数据分类任务,如股票价格预测、心电图分类、运动识别等。它通过结合GASF的优势和CNN的特征学习能力,提供了一种强大的数据分类预测方法。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据私信博主回复GASF-CNN格拉姆角场-卷积神经网络的数据分类预测
 convolution2dLayer([3, 1], 16)  % 卷积核大小 3*1 生成16张特征图batchNormalizationLayer         % 批归一化层reluLayer                       % Relu激活层convolution2dLayer([3, 1], 32)  % 卷积核大小 3*1 生成32张特征图batchNormalizationLayer         % 批归一化层reluLayer                       % Relu激活层fullyConnectedLayer(1)          % 全连接层regressionLayer];               % 回归层
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法'MaxEpochs', 300, ...                  % 最大训练次数 300'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1'LearnRateDropPeriod', 200, ...        % 经过200次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'Plots', 'training-progress', ...      % 画出曲线'Verbose', false);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/127179100

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

这篇关于分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498821

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内