孟德尔随机化+WGCNA+预后模型,7+轻松get

2023-12-15 19:44

本文主要是介绍孟德尔随机化+WGCNA+预后模型,7+轻松get,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天给同学们分享一篇生信文章“Exploring the causality and pathogenesis of systemic lupus erythematosus in breast cancer based on Mendelian randomization and transcriptome data analyses”,这篇文章发表在Front Immunol期刊上,影响因子为7.3。

46fc92502c1e4fff3cb141962355e230.jpeg

结果解读:

SNP的选择

总体而言,这项MR研究分析了共计243,218名欧洲血统个体(128,178例患者和115,040例对照组)以及107,936名东亚血统人群(9,774例患者和98,162例对照组)。作者从GWAS中提取了与SLE显著相关的IVs(p < 5 × 10 −8 ),并去除了LD(r 2 <0.001,10,000-kb)。此外,作者分析中的F统计量大于100,表明这些IVs能够强有力地预测SLE的发生率。


遗传易感性与SLE和乳腺癌风险

MR分析显示欧洲队列中SLE与乳腺癌之间不存在因果关联(乳腺癌:OR 0.9985,95%CI 0.9873-1.0099,p=0.79;ER+乳腺癌:OR 0.9974,95%CI 0.9850-1.0101,p=0.69;ER-乳腺癌:OR 1.009,95%CI 0.99-1.02,p=0.22)。没有证据表明其他MR方法基于乳腺癌风险增加。然而,注意到东亚人群中SLE和乳腺癌的遗传易感性的因果推断(IVW:OR:0.95,95%CI:0.92-0.98,p=0.006;加权中位数:OR:0.93,95%CI:0.88-0.97,p=0.002;MR-PRESSO:OR 0.95,95%CI:0.92-0.98,p=0.004)(图2)。多变量MR分析也支持了SLE与东亚人群中乳腺癌显著相关的发现(SNPs:25,OR:0.95,95%CI:0.92-0.98,p=0.0013),在调整混杂因素(吸烟,特征ID:ieu-b-4877)后。

8d8138c3e975f80c802e88445f332896.jpeg


MR估计的敏感性分析

首先,作者进行了MR-Egger回归分析以研究水平多效性,结果表明多效性不太可能对因果关系产生偏倚(所有p值>0.05)。其次,MR-PRESSO测试的结果与无异常值的IVW方法一致,表明原始结果可靠。第三,考虑到东亚队列中SLE和乳腺癌之间的潜在关系,作者进行了逐一排除分析和Cochrane Q检验。逐一排除分析发现没有单个SNP驱动SLE和乳腺癌之间的因果关系(图2)。Cochrane Q检验的p值均大于0.05(IVW测试的Q值为32.93,p=0.2;MR-Egger测试的Q值为32.8,p=0.17),表明SNP之间没有异质性。


识别乳腺癌患者中与SLE相关的差异表达基因

在标准化微阵列结果之后(图3A、B),识别出SLE和乳腺癌相关数据集之间的447个共同差异表达基因(图3C)。通过聚类,WGCNA(软阈值功率=6)进一步去除了灰色模块中的61个明显异常值,并识别出386个感兴趣的关键基因(图3D、E)。

569ff1f26161115a40c80b92d443ede7.jpeg


功能特性分析

为了进一步了解乳腺癌中386个SLE-DEGs的潜在功能,作者进行了GO和KEGG富集分析。GO分析显示DEGs富集在细胞周期、细胞增殖和对激素的反应方面(图3F)。KEGG富集分析主要涉及与癌症和细胞周期相关的途径,包括代谢途径、微小RNA、转录调控失调、蛋白聚糖和中心碳代谢(图3G)。&nbsp;


PPI网络和关键基因分析

首先,对386个常见的DEGs构建了PPI网络。其次,使用Cytoscape的Cytuhubba插件计算了前20个关键基因(AURKA,UBE2C,CDC20,PTTG1,CCNB2,MELK,NDC80,CENPF,PRC1,KIF23,TOP2A,RACGAP1,NUSAP1,HMMR,ASPM,KIF15,TTK,DLGAP5,CCNA2和NCAPG)(图4A)。第三,斯皮尔曼相关分析显示这二十个关键基因之间存在显著密切的关联(所有p值<0.0001)(图4B)。

b0e188cd4a223d5052c2d01e6a4e2475.jpeg


建立和验证预测模型

LASSO回归方法被用于优化20个关键基因。最终,选择了最有价值的五个预测基因(RACGAP1、HMMR、TTK、TOP2A和KIF15)来构建SLEscore(图4C、D)。SLEscore的计算方法如下:[-0.036 × TOP2A的表达值] + [0.032 × TTK的表达值] + [0.32 × RACGAP1的表达值] + [0.024 × HMMR的表达值] + [-0.16 × KIF15的表达值]。SLEscore的所有五个关键基因在肿瘤样本中均显著上调(图4E-G)。根据SLEscore,乳腺癌患者被分为两个亚组,其中SLEscore high 与五个预后分子的较高表达水平相关(图5A)。与低SLEscore组相比,高SLEscore组与明显更差的总生存期相关(图5B)。ROC曲线表明,SLEscore可以作为预测乳腺癌患者总生存期的敏感标志物(3年AUC:0.81,5年AUC:0.91)(图5C)。此外,多变量COX回归分析表明,SLEscore是乳腺癌患者的独立风险因素(HR 7.1,95%CI 1.50-33.4,p=0.013)(图5D)。作者建立的SLEscore的C指数为0.73(标准误差:0.043)。在GSE42568数据集中进一步验证了SLEscore,表明利用TCGA数据库构建的SLEscore是乳腺癌患者的独立预后因子(HR 1.92,95%CI 1.08-3.42,p=0.02)(图5E)。随后,作者通过整合SLEscore、年龄和TNM分期为乳腺癌患者建立了一个预测模型,该模型在预测乳腺癌患者1年、3年和5年的生存率方面表现良好(图6A、B)。

141013b1de93845008a151d8ddca17de.jpeg

6ab4e8145e2018a00d3bb7abfa4163b1.jpeg


TME细胞的探索,ESTIMATE评分,ICB和PANoptosis

Spearman相关分析揭示了20种分子与TME浸润细胞之间的显著关联(图6C)。值得注意的是,高SLE得分与较低的树突状细胞、嗜酸性粒细胞、肥大细胞、CD4+ T细胞和辅助T细胞表达显著相关(图6D)。ESTIMATE得分与五个关键基因的表达水平呈负相关(所有p值<0.05)(图6E),表明其与疾病结果和肿瘤浸润免疫环境的关系。SLE得分与八种ICB和PANoptosis基因模式显著相关,这些已被证明是乳腺癌患者的预后生物标志物。



总结

作者的MR分析表明,在东亚人群中,SLE患者对乳腺癌症的风险较低。本研究还为癌症和SLE患者的分层提供了路线图,有助于改善个性化随访和个性化决策的策略。

这篇关于孟德尔随机化+WGCNA+预后模型,7+轻松get的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497638

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU