使用 PAI-Blade 加速 StableDiffusion Fine-Tuning

2023-12-15 18:45

本文主要是介绍使用 PAI-Blade 加速 StableDiffusion Fine-Tuning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01

背景

Stable Diffusion 模型自从发布以来在互联网上发展迅猛,它可以根据用户输入的文本描述信息生成相关图片,用户也可以提供自己喜爱的风格的照片,来对模型进行微调。例如当我们输入 "A photo of sks dog in a bucket" ,StableDiffusion 模型会生成类似下面的图片:

02

PAI-Blade 加速 PyTorch 训练

PAI-Blade 使用编译优化技术提高 PyTorch 程序的执行效率,其代码已经开源在

Github: https://github.com/alibaba/BladeDISC.

PAI-Blade API

使用 PAI-Blade 对 PyTorch 程序进行加速非常简单,只需要在原有程序上插入两行代码即可:

# 1. import PAI-Blade Python package import torch_blade# 2. compile and accelerate 'model' performancemodel = torch.compile(backend='aot_disc')(model)for batch, label in data_loader(): output = model(**batch) loss = compute_loss(output, label) loss.backward() optimizer.step()

torch.compile(backend='aot_disc')(model) 使用 BladeDISC 作为 TorchDynamo 的编译器后端,加速 PyTorch 模型的的前向和反向计算,其中 model也可以是一段 PyTorch 实现的 Python 函数。

PAI-Blade 编译 Pipeline

TorchDynamo 将 PyTorch 程序记录到一个或多个 FX Graph 上,PAI-Blade 通过一系列 Pass 优化计算图的执行效率。

https://pytorch.org/docs/2.1/torch.compiler_deepdive.html

MHLO Conversion PAI-Blade 引入了 Torch-MLIR Project 将 PyTorch IR 转换为 MLIR 世界中的 MHLO Dialect,以便进一步使用 BladeDISC 编译器进行性能优化,同时 PAI-Blade 开发团队也将 MHLO 转换相关代码贡献给了社区。

https://github.com/llvm/torch-mlir

BlaDNN Library 提供了高性能计算密集型算子库,PAI-Blade 会根据计算图上的一些典型 Pattern,自动的将一部分子图替换为等价的,有极致性能的 BlaDNN 算子。

Memory Intensive Kernel Fusion

算子融合是图层面编译优化最重要的收益来源,一个典型的 workload 上,可能会包含 element-wise 算子,动态 shape 的 broadcast/reshape/reduce 算子以及计算密集型算子,例如 GEMM 等。在 PyTorch 中,每一个算子都是一个独立的 kernel,而过多的 kernel 会导致 Tensor 在 Cache 中频繁的交换,导致显存带宽的浪费,而频繁的发射 kernel 也会造成一定的额外的开销。

对于如上图的一个典型的访存类算子 workload ,类似 XLA 做法会将 schedule 相同的算子合并在一起,从而将 7 个 kernel 合并为 3 个 kernel。BladeDISC 会采用更为激进的 fusion 策略,从而进一步提高 workload 性能:

  • 每个 fusion block 表示为独立的 ww 结构,使用 shared-memory 进行粘连,从而将 kernel 数量由 3 减少到 1
  • 使用 AStitch 技术,将不同的 loop 结构黏贴在一起,通过 index 推导生成一个 loop 结构,同时引入了 index_cache, value_cache 消除冗余的 index 计算。

在上面 workload 中,BladeDISC 的 fusion 策略可以将 kernel 数量从 7 减少到 1,并且在 kernel 内部使用 index 推导和 cache 来减少冗余的计算,从而逼近硬件的理论峰值。

Inplace Mutation 优化

在 PyTorch Eager 模式下,通过 inplace 算子 (aten.add_) 可以实现对输入的 tensor (w) 进行更新,而不需要一个额外的输出 Tensor。但是在 MLIR 世界里,IR 必须是符合 SSA 形式的,所以没有办法直接表示 inplace 语义,通常的做法是增加一个 D2D memcpy 算子来将输出的 buffer (w') 覆盖输入 buffer (w)。但这样做会造成额外的一次显存拷贝。

BladeDISC 的做法是找到需要 inplace 更新的两个buffer,在 MHLO IR 上进行标记,将 w和 w' 标记为相同的 buffer,在生成 gpu.store指时,将输出直接写回 wbuffer,从而节省一次显存拷贝所造成的额外开销。

03

Benchmark

PAI-Blade 在 A10 和 A100 上最大可获得 41.6 % 和 28.4% 的性能收益(batchsize=1)。

04

在 DSW 上使用 PAI-Blade

  1. 在 PAI 平台中创建 DSW 实例,并使用如下自定义 Docker 镜像,具体步骤可以参考文档

https://help.aliyun.com/zh/pai/user-guide/overview-5

pai-blade-registry.cn-hangzhou.cr.aliyuncs.com/pai-blade/aicompiler:latest-stablediffusion-torch-2.0.1-cu118
  1. 创建 Jupyter Notebook,启动 fine-tuning 任务
!cd /opt/StableDiffusion && bash launch_dreambooth_train.sh

在看到如下日志时,表示微调任务执行完成:

  1. 启动推理任务,并在 Jupyter Notebook 中查看生成的图片
!cd /opt/StableDiffusion && python inference.py && cp dog-bucket.png /mnt/workspace

参考文档:

  • BladeDISC:

https://github.com/alibaba/BladeDISC

  • TorchDynamo:

https://pytorch.org/docs/2.1/torch.compiler_deepdive.html

  • Torch-MLIR Project:

https://github.com/llvm/torch-mlir

  • 文档:

https://help.aliyun.com/zh/pai/user-guide/overview-5


 

这篇关于使用 PAI-Blade 加速 StableDiffusion Fine-Tuning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497469

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca