使用 PAI-Blade 加速 StableDiffusion Fine-Tuning

2023-12-15 18:45

本文主要是介绍使用 PAI-Blade 加速 StableDiffusion Fine-Tuning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01

背景

Stable Diffusion 模型自从发布以来在互联网上发展迅猛,它可以根据用户输入的文本描述信息生成相关图片,用户也可以提供自己喜爱的风格的照片,来对模型进行微调。例如当我们输入 "A photo of sks dog in a bucket" ,StableDiffusion 模型会生成类似下面的图片:

02

PAI-Blade 加速 PyTorch 训练

PAI-Blade 使用编译优化技术提高 PyTorch 程序的执行效率,其代码已经开源在

Github: https://github.com/alibaba/BladeDISC.

PAI-Blade API

使用 PAI-Blade 对 PyTorch 程序进行加速非常简单,只需要在原有程序上插入两行代码即可:

# 1. import PAI-Blade Python package import torch_blade# 2. compile and accelerate 'model' performancemodel = torch.compile(backend='aot_disc')(model)for batch, label in data_loader(): output = model(**batch) loss = compute_loss(output, label) loss.backward() optimizer.step()

torch.compile(backend='aot_disc')(model) 使用 BladeDISC 作为 TorchDynamo 的编译器后端,加速 PyTorch 模型的的前向和反向计算,其中 model也可以是一段 PyTorch 实现的 Python 函数。

PAI-Blade 编译 Pipeline

TorchDynamo 将 PyTorch 程序记录到一个或多个 FX Graph 上,PAI-Blade 通过一系列 Pass 优化计算图的执行效率。

https://pytorch.org/docs/2.1/torch.compiler_deepdive.html

MHLO Conversion PAI-Blade 引入了 Torch-MLIR Project 将 PyTorch IR 转换为 MLIR 世界中的 MHLO Dialect,以便进一步使用 BladeDISC 编译器进行性能优化,同时 PAI-Blade 开发团队也将 MHLO 转换相关代码贡献给了社区。

https://github.com/llvm/torch-mlir

BlaDNN Library 提供了高性能计算密集型算子库,PAI-Blade 会根据计算图上的一些典型 Pattern,自动的将一部分子图替换为等价的,有极致性能的 BlaDNN 算子。

Memory Intensive Kernel Fusion

算子融合是图层面编译优化最重要的收益来源,一个典型的 workload 上,可能会包含 element-wise 算子,动态 shape 的 broadcast/reshape/reduce 算子以及计算密集型算子,例如 GEMM 等。在 PyTorch 中,每一个算子都是一个独立的 kernel,而过多的 kernel 会导致 Tensor 在 Cache 中频繁的交换,导致显存带宽的浪费,而频繁的发射 kernel 也会造成一定的额外的开销。

对于如上图的一个典型的访存类算子 workload ,类似 XLA 做法会将 schedule 相同的算子合并在一起,从而将 7 个 kernel 合并为 3 个 kernel。BladeDISC 会采用更为激进的 fusion 策略,从而进一步提高 workload 性能:

  • 每个 fusion block 表示为独立的 ww 结构,使用 shared-memory 进行粘连,从而将 kernel 数量由 3 减少到 1
  • 使用 AStitch 技术,将不同的 loop 结构黏贴在一起,通过 index 推导生成一个 loop 结构,同时引入了 index_cache, value_cache 消除冗余的 index 计算。

在上面 workload 中,BladeDISC 的 fusion 策略可以将 kernel 数量从 7 减少到 1,并且在 kernel 内部使用 index 推导和 cache 来减少冗余的计算,从而逼近硬件的理论峰值。

Inplace Mutation 优化

在 PyTorch Eager 模式下,通过 inplace 算子 (aten.add_) 可以实现对输入的 tensor (w) 进行更新,而不需要一个额外的输出 Tensor。但是在 MLIR 世界里,IR 必须是符合 SSA 形式的,所以没有办法直接表示 inplace 语义,通常的做法是增加一个 D2D memcpy 算子来将输出的 buffer (w') 覆盖输入 buffer (w)。但这样做会造成额外的一次显存拷贝。

BladeDISC 的做法是找到需要 inplace 更新的两个buffer,在 MHLO IR 上进行标记,将 w和 w' 标记为相同的 buffer,在生成 gpu.store指时,将输出直接写回 wbuffer,从而节省一次显存拷贝所造成的额外开销。

03

Benchmark

PAI-Blade 在 A10 和 A100 上最大可获得 41.6 % 和 28.4% 的性能收益(batchsize=1)。

04

在 DSW 上使用 PAI-Blade

  1. 在 PAI 平台中创建 DSW 实例,并使用如下自定义 Docker 镜像,具体步骤可以参考文档

https://help.aliyun.com/zh/pai/user-guide/overview-5

pai-blade-registry.cn-hangzhou.cr.aliyuncs.com/pai-blade/aicompiler:latest-stablediffusion-torch-2.0.1-cu118
  1. 创建 Jupyter Notebook,启动 fine-tuning 任务
!cd /opt/StableDiffusion && bash launch_dreambooth_train.sh

在看到如下日志时,表示微调任务执行完成:

  1. 启动推理任务,并在 Jupyter Notebook 中查看生成的图片
!cd /opt/StableDiffusion && python inference.py && cp dog-bucket.png /mnt/workspace

参考文档:

  • BladeDISC:

https://github.com/alibaba/BladeDISC

  • TorchDynamo:

https://pytorch.org/docs/2.1/torch.compiler_deepdive.html

  • Torch-MLIR Project:

https://github.com/llvm/torch-mlir

  • 文档:

https://help.aliyun.com/zh/pai/user-guide/overview-5


 

这篇关于使用 PAI-Blade 加速 StableDiffusion Fine-Tuning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497469

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图