yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)

2023-12-15 17:52

本文主要是介绍yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​​​​​​yolov8实战第二天——yolov8训练结果分析(保姆式解读)-CSDN博客 

YOLOv8是一种基于深度神经网络的目标检测算法,它是YOLO(You Only Look Once)系列目标检测算法的最新版本。YOLOv8的主要改进包括:

  1. 更高的检测精度:通过引入更深的卷积神经网络和更多的特征层,YOLOv8可以在保持实时性的同时提高检测精度。

  2. 更快的检测速度:通过对模型进行优化,YOLOv8可以在不降低检测精度的情况下提高检测速度。

  3. 支持更多的检测任务:除了传统的物体检测任务之外,YOLOv8还支持人脸检测、车辆检测等更多的检测任务。

  4. 更易于训练和部署:YOLOv8采用了更加简单的网络结构和训练策略,使得它更易于训练和部署。

YOLOv8是一个非常强大的目标检测算法,它在准确性、速度和易用性方面都具有很大的优势,因此在工业界和学术界都受到了广泛的关注和应用。

一、yolov8部署

说明:请严格安装部署步骤。

第一步、显卡驱动查看 nvidia-smi 


第二步、yolo8代码下载

https://github.com/ultralytics/ultralytics 


第三步、cuda及cudnn安装

https://developer.nvidia.com/cuda-toolkit-archive https://developer.nvidia.com/rdp/cudnn-archive 


第四步、安装anaconda

https://www.anaconda.com/download

环境变量设置(安装在哪里就找那个路径):


第五步、创建python环境

conda create -n yolo python==3.11 

conda环境操作指南:

查看现有环境 conda env list  激活失败 conda init cmd.exe删除环境 conda env remove -n yolo 


第六步、激活环境

一定要选择命令提示符。

activate yolo

以后每次使用都要激活该环境。


第七步、安装pytorch

https://pytorch.org/

我是cuda12.0,所以安装cuda11.8版本。 

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia


第八步、安装库

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple


第九步、推理检测

yolo predict model=yolov8n.pt source=bus.jpg

图片名自己设置,自动下载模型yolov8n.pt,结果在runs文件夹中。

第十步、训练

yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01

自动训练下载数据集datasets,报错,设置安装anaconda所在盘的虚拟内存。

二、yolov8训练自己的数据集

第一步、数据准备

在yolov8中建立datasets文件夹,然后建立数据集文件夹mydata。

mydata中是imges图片文件和label标注后的Annotations xml文件夹和imageSets。 

其中使用makeTxt.py,给数据分类trian val test。

import os
import randomtrainval_percent = 0.1
train_percent = 0.9
xmlfilepath = './Annotations'
txtsavepath = './ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('./ImageSets/trainval.txt', 'w')
ftest = open('./ImageSets/test.txt', 'w')
ftrain = open('./ImageSets/train.txt', 'w')
fval = open('./ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftest.write(name)else:fval.write(name)else:ftrain.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

运行后ImageSets文件夹生成四个txt。 

再使用voc_label.py,将数据转换成label格式。修改自己的类,逗号隔开,我训练的就一个“老鼠”类。

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import joinsets=[('train'), ('test'),('val')]classes = ["mouse"]def convert(size, box):dw = 1./(size[0])dh = 1./(size[1])x = (box[0] + box[1])/2.0 - 1y = (box[2] + box[3])/2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x*dww = w*dwy = y*dhh = h*dhreturn (x,y,w,h)def convert_annotation(image_id):in_file = open('Annotations/%s.xml'%(image_id))out_file = open('labels/%s.txt'%( image_id), 'w')tree=ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):# difficult = obj.find('difficult').textcls = obj.find('name').text# if cls not in classes or int(difficult)==1:if cls not in classes:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))bb = convert((w,h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()for image_set in sets:if not os.path.exists('labels/'):os.makedirs('labels/')image_ids = open('ImageSets/%s.txt'%(image_set)).read().strip().split()list_file = open('%s.txt'%(image_set), 'w')for image_id in image_ids:list_file.write('%s/images/%s.jpg\n'%(wd,image_id))convert_annotation(image_id)list_file.close()#os.system("cat 2008_train.txt > train.txt")
#os.system("cat 2008_train.txt 2008_val.txt > train.txt")
#os.system("cat 2008_train.txt 2008_val.txt 2008_test.txt> train.txt")#os.system("cat 2014_train.txt 2014_val.txt 2012_train.txt 2012_val.txt > train.txt")
#os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")

运行后生成labels文件夹和三个txt。

至此数据准备工作完成,开始训练。 

第二步、训练

建立一个yaml文件

shu.yaml

train: datasets/mydata/train.txt
val: datasets/mydata/val.txt# Classes
names:0: mouse

训练指令:

yolo train data=shu.yaml model=yolov8n.pt epochs=100 lr0=0.01 

至此训练完成。 在runs中生成训练结果和训练模型。

训练结果分析:yolov8实战第二天——yolov8训练结果分析(保姆式解读)-CSDN博客

第三步、测试 

使用训练后的模型进行测试。

测试指令:

yolo predict model=runs/detect/train12/weights/best.pt source=datasets/mydata/images/mouse-4-6-0004.jpg

这篇关于yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497336

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创