SLAM算法与工程实践——相机篇:传统相机使用(2)

2023-12-15 05:20

本文主要是介绍SLAM算法与工程实践——相机篇:传统相机使用(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SLAM算法与工程实践系列文章

下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此

SLAM算法与工程实践系列文章链接


下面是专栏地址:

SLAM算法与工程实践系列专栏


文章目录

  • SLAM算法与工程实践系列文章
    • SLAM算法与工程实践系列文章链接
    • SLAM算法与工程实践系列专栏
  • 前言
  • SLAM算法与工程实践——相机篇:传统相机使用(2)
    • 相机标定
      • 图像缩放和裁剪后后参数变化
        • 缩放(resize)后参数
        • 裁剪(crop)后参数
    • 立体校正
      • initUndistortRectifyMap()和remap()组合
      • undistort()
      • undistortPoints()
      • 组合比较


前言

这个系列的文章是分享SLAM相关技术算法的学习和工程实践


SLAM算法与工程实践——相机篇:传统相机使用(2)

相机标定

参考:

opencv 标定与畸变矫正

利用MatLab+OpenCV进行相机畸变矫正

要matlab标定数据做双目相机矫正OpenCV C++

Matlab 双目相机标定 opencv应用

【OpenCV】摄像机标定+畸变校正

标定的方式一般来说是通过拍摄多张标定板的图片,标定板上有一些特殊的图案可以让计算机自动查找到这些图案的位置,根据这些位置可以计算出外参和内参,这是一个畸变和投影方程组求解过程,根据相机镜头方程不一样,至少4-8组标记位可以得到唯一解

打开Matlab,控制台输入

% 单目相机
cameraCalibrator % 双目相机
stereoCameraCalibrator

选择左右视图的文件夹,导入图片,我这个标定板一小格为 30 mm

在这里插入图片描述

在这里插入图片描述

其中一组的左图被遮挡了,不能用

在这里插入图片描述

双目标定界面

在这里插入图片描述

畸变参数总共有五个,径向畸变3个( k 1 , k 2 , k 3 k_1,k_2,k_3 k1,k2,k3)和切向畸变2个( p 1 , p 2 p_1,p_2 p1,p2)。

径向畸变
x c o r r e c t e d = x ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) y c o r r e c t e d = y ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) \begin{array}{l}{{x_{\mathrm{corrected}}=x(1+k_{1}r^{2}+k_{2}r^{4}+k_{3}r^{6})}}\\{{y_{\mathrm{corrected}}=y(1+k_{1}r^{2}+k_{2}r^{4}+k_{3}r^{6})}}\end{array} xcorrected=x(1+k1r2+k2r4+k3r6)ycorrected=y(1+k1r2+k2r4+k3r6)
切向畸变:
x c o r r e c t e d = x + [ 2 p 1 x y + p 2 ( r 2 + 2 x 2 ) ] y c o r r e c t e d = y + [ p 1 ( r 2 + 2 y 2 ) + 2 p 2 x y ] \begin{aligned}x_{\mathrm{corrected}}&=x+[2p_{1}xy+p_{2}(r^{2}+2x^{2})]\\y_{\mathrm{corrected}}&=y+[p_{1}(r^{2}+2y^{2})+2p_{2}xy]\end{aligned} xcorrectedycorrected=x+[2p1xy+p2(r2+2x2)]=y+[p1(r2+2y2)+2p2xy]
以及在OpenCV中的畸变系数的排列(这点一定要注意 k 1 , k 2 , p 1 , p 2 , k 3 k_1,k_2,p_1,p_2,k_3 k1k2p1p2k3),千万不要以为 k k k 是连着的。
D i s t o r t i o n c o e f f i c i e n t s = ( k 1 k 2 p 1 p 2 k 3 ) \mathrm{Distortion}_{\mathrm{coefficients}}=(\mathrm{k_{1}}\quad\mathrm{k_{2}}\quad\mathrm{p_{1}}\quad\mathrm{p_{2}}\quad\mathrm{k_{3}}) Distortioncoefficients=(k1k2p1p2k3)

选择畸变参数,calibrate

并且通过实验表明,三个参数的时候由于 k 3 k_3 k3 所对应的非线性较为剧烈。估计的不好,容易产生极大的扭曲,所以我们在 MATLAB 中选择使用两参数,并且选择错切和桶形畸变。

在这里插入图片描述

拖拉红线,删除误差大的图像对,使投影误差小于0.1像素最好。然后导出标定参数。

在这里插入图片描述

我这里标定的误差在0.4,精度要求高时不能用

在这里插入图片描述

重新拍摄,误差为0.08

在这里插入图片描述

精度要求不高的情况下,0.13的误差也可以接受

在这里插入图片描述

可以显示校正后的图像

在这里插入图片描述

注意:

在Matlab中选择畸变参数时,有时需要选3参数的,有时需要选2参数的,例如我这里选3参数的,图像校正后边缘变形了

在这里插入图片描述

选择2参数,校正后就是正常图像

在这里插入图片描述

如果选择两参数的模型,那么 k 3 k_3 k3 的值直接设为0

导出相机参数

在这里插入图片描述

在这里插入图片描述

误差

在这里插入图片描述

相机参数如下所示

在这里插入图片描述

相机外参:

在这里插入图片描述

上图中的 RotationOfCamera2 TranslationOfCamera2 是右相机相对于左的旋转平移矩阵,即R和T

校正畸变后的图像

相机内参:

在这里插入图片描述
在这里插入图片描述

注意:其中畸变系数向量在opencv中的顺序为 k1 k2 d1 d2 k3

opencv中内参的格式为
[ f x 0 c x 0 f y c y 0 0 1 ] \left[\begin{matrix} f_x&0&c_x\\ 0&f_y&c_y\\ 0&0&1 \end{matrix}\right] fx000fy0cxcy1

填入opencv前的中间处理

  1. 相机内参旋转矩阵需要转置后填入

  2. k1,k2,p1,p2,,k3 按照顺序填入畸变系数矩阵 distCoeff

  3. 平移矩阵直接填入

然后将参数写入配置文件中,方便下次读取

图像缩放和裁剪后后参数变化

参考:

图像缩放后相机内参如何变化的

图像Crop和Resize对于相机内参的影响

缩小或放大图像,对应的相机内参如何变化

图像缩放对相机内外参矩阵的影响

缩放Resize与裁剪(Center、Random)Crop对相机内参IntrinsicMatrix的影响

缩放(resize)后参数

内参中的 f x , f y , c x , c y f_x,f_y,c_x,c_y fx,fy,cx,cy 都会相应的变化

如果图像缩小为原来的一半,那么 f x , f y , c x , c y f_x,f_y,c_x,c_y fx,fy,cx,cy 都会缩小一半

外参的 R R R T T T 都不会变化

裁剪(crop)后参数

裁剪后, c x , c y c_x,c_y cx,cy 会相应的变小

在这里插入图片描述

f x , f y f_x,f_y fx,fy 不变

立体校正

参考:

【双目视觉】基于opencv双目校正以及双目测距

OpenCV 不同畸变校正函数的使用说明

立体校正的函数说明如下

void stereoRectify(InputArray cameraMatrix1, InputArray distCoeffs1,InputArray cameraMatrix2,InputArray distCoeffs2, Size imageSize,InputArray R, InputArray T,OutputArray R1, OutputArray R2, OutputArray P1,OutputArray P2, OutputArray Q, int flags=CALIB_ZERO_DISPARITY, double alpha=-1,Size newImageSize=Size(), Rect* validPixROI1=0, Rect* validPixROI2=0 )/*	cameraMatrix1-第一个摄像机的摄像机矩阵,即左相机相机内参矩阵,矩阵第三行格式应该为 0 0 1distCoeffs1-第一个摄像机的畸变向量cameraMatrix2-第一个摄像机的摄像机矩阵,即右相机相机内参矩阵,矩阵第三行格式应该为 0 0 1distCoeffs2-第二个摄像机的畸变向量imageSize-图像大小R- 相机之间的旋转矩阵,这里R的意义是:相机1通过变换R到达相机2的位姿T- 左相机到右相机的平移矩阵R1-输出矩阵,第一个摄像机的校正变换矩阵(旋转变换)R2-输出矩阵,第二个摄像机的校正变换矩阵(旋转矩阵)P1-输出矩阵,第一个摄像机在新坐标系下的投影矩阵P2-输出矩阵,第二个摄像机在想坐标系下的投影矩阵Q-4*4的深度差异映射矩阵flags-可选的标志有两种:零或者CV_CALIB_ZERO_DISPARITY ,如果设置 CV_CALIB_ZERO_DISPARITY 的话,
该函数会让两幅校正后的图像的主点有相同的像素坐标。否则该函数会水平或垂直的移动图像,以使得其有用的范围最大alpha-拉伸参数。如果设置为负或忽略,将不进行拉伸。如果设置为0,那么校正后图像只有有效的部分会被显示(没有黑色的部分),
如果设置为1,那么就会显示整个图像。设置为0-1之间的某个值,其效果也居于两者之间。newImageSize-校正后的图像分辨率,默认为原分辨率大小。validPixROI1-可选的输出参数,Rect型数据。其内部的所有像素都有效validPixROI2-可选的输出参数,Rect型数据。其内部的所有像素都有效

initUndistortRectifyMap()和remap()组合

通过映射的方式逐个找出理想点在有畸变原图的位置。initUndistortRectifyMap()用于产生映射表,remap()用于执行映射。

适用场景:

当要进行多次畸变校正时,使用initUndistortRectifyMap() remap()组合比较有效率,只需要执行一次initUndistortRectifyMap(),后面畸变校正只需要执行remap()即可

用法如下

    //计算校正映射矩阵Mat map11, map12, map21, map22;initUndistortRectifyMap(cameraMatrixL, distCoeffsL, R1, P1, imageSize, CV_16SC2, map11, map12);initUndistortRectifyMap(cameraMatrixR, distCoeffsR, R2, P2, imageSize, CV_16SC2, map21, map22);for (int i = 0; i < imgLs.size(); i++){//进行校正映射Mat img1r, img2r;imgLs[i];remap(imgLs[i], img1r, map11, map12, INTER_LINEAR);remap(imgRs[i], img2r, map21, map22, INTER_LINEAR);imwrite("./imgdata/imgleftRec" + to_string(i) + ".png", img1r);imwrite("./imgdata/imgrightRec" + to_string(i) + ".png", img2r);//拼接图像Mat result;hconcat(img1r, img2r, result);imshow("校正后结果" + to_string(i), result);}

undistort()

本质是initUndistortRectifyMap() remap()组合,写在了一个函数里。方便只校正一次。

适用场景:
当只需要执行一次畸变校正时,用undistort()比用组合形式更方便一些。

undistortPoints()

适用场景:
当只需要找出有畸变原图中的少数几个点经过畸变校正后的理想位置时,使用undistortPoints()可达到目的。

组合比较

initUndistortRectifyMap() remap()组合和undistort()结果是一模一样的

initUndistortRectifyMap() remap()组合和undistortPoints()对特征点的校正结果大体一致,在亚像素级别有略微差别

这篇关于SLAM算法与工程实践——相机篇:传统相机使用(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/495261

相关文章

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QUndoView控件的具体使用

《Qt中QUndoView控件的具体使用》QUndoView是Qt框架中用于可视化显示QUndoStack内容的控件,本文主要介绍了Qt中QUndoView控件的具体使用,具有一定的参考价值,感兴趣的... 目录引言一、QUndoView 的用途二、工作原理三、 如何与 QUnDOStack 配合使用四、自

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3