redis:一、面试题常见分类+缓存穿透的定义、解决方案、布隆过滤器的原理和误判现象、面试回答模板

本文主要是介绍redis:一、面试题常见分类+缓存穿透的定义、解决方案、布隆过滤器的原理和误判现象、面试回答模板,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

redis面试题常见分类

在这里插入图片描述

缓存穿透

定义

缓存穿透是一种现象,引发这种现象的原因大概率是遭到了恶意攻击。具体就是查询一个一定不存在的数据,mysql查询不到数据也不会直接写入缓存,就会导致这个数据的每次请求都需要查DB,数据库压力很大,从而挂掉。
在这里插入图片描述

解决方案一:缓存空数据

我们缓存空数据,查询返回的数据为空,仍把这个空结果进行缓存。
优点:简单
缺点:消耗内存,可能会发生缓存和数据库不一致的问题。

为什么可能发生缓存和数据库不一致的问题。因为一开始数据库中没有该数据,redis就会缓存空结果。但是后来我们在数据库中插入该数据时,缓存中依旧是空结果,那么就不一致了。

解决方案二:布隆过滤器

我们可以在缓存预热时,创建一个布隆过滤器,它的作用就是判断一个数据是否存在。每次查询前先查询布隆过滤器,来判断这个数据是否一定存在,如果存在,则查询redis以及之后的DB层。如果不存在则直接返回。
在这里插入图片描述
优点:内存占用较少,没有多余key
缺点:实现复杂,存在误判

布隆过滤器定义、存储/查找数据

布隆过滤器实际上就是一个bitmap(位图),相当于是一个以(bit)位为单位的数组,数组中每个单元只能存储二进制数0或1,初始化全为0。
存储数据就是将数据的值经过x个哈希函数后获取x个哈希值,然后将数组对应位置改为1.
查询数据就是用相同的x个哈希函数获取x个哈希值,然后判断数组对应位置是否都为1.
在这里插入图片描述

布隆过滤器误判

通过布隆过滤器的原理,我们可以发现,如果一个数在过滤器中找不到,那么它一定不存在。但是如果一个数能在过滤器中找到,也不意味着它一定存在。因为过滤器存在误判现象。
譬如下图,id1和id2在数组上的下标覆盖了id3在数组上的下标。存储了id1和id2,就会让id3查询所对应的数组下标位置也变为1。实际上id3是不存在的,但是会被误判为存在。
在这里插入图片描述
误判率:数组越小误判率就越大,数组越大误判率就越小,但是同时带来了更多的内存消耗。
一般我们将误判率设置在5%,比较合理地兼顾内存和误判率。

测试误判率和初始化布隆过滤器代码(不用看,仅供个人存档用)

  /*测试误判率*/private static int getData(RBloomFilter<String> bloomFilter, int size){int count=0;for(int x=size; x<size*2;x++){if(bloomFilter.contains("add"+x)){count++;}}return count;
}/*初始化数据*/private static void initData(RBloomFilter<String> bloomFilter, int size{bloomFilter.tryInit(size, 0.05);for(int x=0;x<size;x++){bloomFilter.add("add"+x);}System.out.println("初始化完成……");}

面试回答模板

什么是缓存穿透 ,怎么解决 ?

背熟以下回答,大概用时1分半。

缓存穿透是一种现象,引发这种现象的原因大概率是遭到了恶意攻击。具体就是查询一个一定不存在的数据,mysql查询不到数据也不会直接写入缓存,就会导致这个数据的每次请求都需要查DB,如果同时并发多个请求的话。数据库压力就会很大,从而挂掉。

解决方案的话一般有两种,第一种是直接缓存空数据。这种方案实现简单,但是可能比较消耗内存,而且有可能发生缓存和数据库数据不一致的问题。我们通常选择第二种解决方案,就是布隆过滤器。布隆过滤器实际上就是一个bitmap(位图),相当于是一个以(bit)位为单位的数组,数组中只能存储0或1,初始时全为0。存储数据就是将数据的值经过x个哈希函数后获取x个哈希值,然后将数组对应位置改为1.查询数据也一样。我们可以在缓存预热时,创建一个布隆过滤器,它的作用就是判断一个数据是否存在。每次查询前先查询布隆过滤器,来判断这个数据是否一定存在,如果存在,则查询redis以及之后的DB层。如果不存在则直接返回。

本篇所有图片来自于黑马程序员。

这篇关于redis:一、面试题常见分类+缓存穿透的定义、解决方案、布隆过滤器的原理和误判现象、面试回答模板的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494990

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱