化秋毫为波澜:运动放大算法(深度学习版)

2023-12-15 00:48

本文主要是介绍化秋毫为波澜:运动放大算法(深度学习版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是运动放大(Motion Magnification)?

将视频中对应位置的运动进行放大,简单理解的话,就是找到时间段内的运动矢量,进行放大,然后权值叠加回去。

 

为什么需要运动放大?

因为很多自然界或者生物的 subtle behaviour 不易被肉眼察觉(如飞机翼的震动,受风影响摇晃的建筑,生物皮肤变化等等),这些微变化只有通过运动放大,才能更好地被机器或者人类来做后续的视频视觉任务。

 

运动放大的难点?

如何在运动放大的同时,尽量保持 apperance 不变?如何不引入大量噪声? 如何保证放大后的动作平滑?没有现存的数据集来训练?

其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。

  • 书的购买链接
  • 书的勘误,优化,源代码资源

传统方法的发展历程:

MIT在2012年首次提出了 Eulerian Video Magnification[1] ,第一次实时且相对鲁棒地应用到一些场景,如远程心率脉搏提取,记得多年前看到宣传的video是非常地震撼~~因为之前做运动放大,都不是用Eulerian方法,而是用Lagrangian视角去做(即运动估计,tracking啥的,非常耗时)

问题描述如下:

\hat{I}(x,t)=f(x+(1+\alpha)\delta(t))

原始信号 I(x,t)表示图像在位置 x 和时刻 tt的亮度值,而 \delta(t)表示运动偏差。目标就是通过调整运动放大系数 \alpha来生成放大后的信号 \tilde{I}(x,t)

文中通过实验发现,temporal filter可以模拟 spatial translation,故问题就简化为 提空间特征+设计时间维度上的滤波器。

算法的流程如下:

1.对视频每一帧都进行拉普拉斯金字塔处理,得到Multi-scale的边缘及形状描述

2. 对每个scale的特征voxel进行pixel-wise 时间上的带通滤波,增强感兴趣频率上的信号,过滤掉不感兴趣频率的噪声

3. 对filtered完的信号进行运动放大,叠加回滤波前的特征voxel;最后将金字塔重构融合。

Eulerian 运动放大框架[1]

 

该方法的cons:

1. 滤波器只能抑制某些频率的噪声,但乘以运动放大系数后,在带通频段的噪声也会放大

2. 若物体本身非静止,而在运动,该放大算法生成的图很模糊

故根据以上不足,后面又有两

这篇关于化秋毫为波澜:运动放大算法(深度学习版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/494505

相关文章

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个