[LLM]nanoGPT---训练一个写唐诗的GPT

2023-12-14 15:20
文章标签 训练 llm gpt 唐诗 nanogpt

本文主要是介绍[LLM]nanoGPT---训练一个写唐诗的GPT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

karpathy/nanoGPT: The simplest, fastest repository for training/finetuning medium-sized GPTs. (github.com)

原有模型使用的莎士比亚的戏剧数据集, 如果需要一个写唐诗机器人,需要使用唐诗的文本数据,

一个不错的唐诗,宋词数据的下载资源地址:

https://github.com/chinese-poet

这个数据集里面包含搜集到的唐诗,宋词,元曲小说文本数据。

一 数据准备

1. 先下载全唐诗数据,保存到 data/poemtext/tang-poetry下

2. 进行数据的预处理

format-data.py

# -*- coding: utf-8 -*-
import glob
import json
datas_json=glob.glob("./tang-poetry/poet*.json") #1匹配所有唐诗json文件for data_json in datas_json[:]: #2处理匹配的每一个文件with open(data_json,"r",encoding="utf-8") as f:ts_data =json.load(f)for each_ts in ts_data[:]: #3处理文件中每段数据,只要五言诗和2句的paragraphs_list =each_ts["paragraphs"]if len(paragraphs_list) == 2 and len(paragraphs_list[0])==12 and len(paragraphs_list[1]) == 12:with open("tang_poet.txt","a",encoding="utf-8") as f2:f2.write("".join(paragraphs_list))f2.write("\n")f =open("tang_poet.txt","r",encoding="utf-8")
print(len(f.readlines()))

prepare.py

import os
import requests
import tiktoken
import numpy as np# download the tiny shakespeare dataset
input_file_path = os.path.join(os.path.dirname(__file__), 'tang_poet.txt')
with open(input_file_path, 'r') as f:data = f.read()
n = len(data)
train_data = data[:int(n*0.9)]
val_data = data[int(n*0.9):]# encode with tiktoken gpt2 bpe
enc = tiktoken.get_encoding("gpt2")
train_ids = enc.encode_ordinary(train_data)
val_ids = enc.encode_ordinary(val_data)
print(f"train has {len(train_ids):,} tokens")
print(f"val has {len(val_ids):,} tokens")# export to bin files
train_ids = np.array(train_ids, dtype=np.uint16)
val_ids = np.array(val_ids, dtype=np.uint16)
train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))

二 配置文件准备

参考   train_shakespeare_char.py

三 开始训练

参考   train_shakespeare_char.py

# mac pro m1机器上
python3 train.py config/train_poemtext_char.py --device=mps --compile=False --eval_iters=20 --log_interval=1 --block_size=64 --batch_size=12 --n_layer=4 --n_head=4 --n_embd=128 --max_iters=1000 --lr_decay_iters=1000 --dropout=0.0

四 生成唐诗

python3 sample.py --out_dir=out-poemtext-char --device=mps

参考:

迷你版ChatGPT开源,教你怎么用nanoGPT训练一个写小说的AI机器人! - 知乎 (zhihu.com)

Gpt进阶(二): 以古诗集为例,训练一个自己的古诗词gpt模型 - 知乎 (zhihu.com)

这篇关于[LLM]nanoGPT---训练一个写唐诗的GPT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/493062

相关文章

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

多云架构下大模型训练的存储稳定性探索

一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平