sparse Autoencoder(3)---自编码算法与稀疏性

2023-12-14 07:18

本文主要是介绍sparse Autoencoder(3)---自编码算法与稀疏性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考自:UFLDL

目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 \textstyle \{x^{(1)}, x^{(2)}, x^{(3)}, \ldots\} ,其中\textstyle x^{(i)} \in \Re^{n} 。自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如\textstyle y^{(i)} = x^{(i)} 。下图是一个自编码神经网络的示例。

                                                                                                  

自编码神经网络尝试学习一个 \textstyle h_{W,b}(x) \approx x 的函数。换句话说,它尝试逼近一个恒等函数,从而使得输出\textstyle \hat{x} 接近于输入\textstyle x 。恒等函数虽然看上去不太有学习的意义,但是当我们为自编码神经网络加入某些限制,比如限定隐藏神经元的数量,我们就可以从输入数据中发现一些有趣的结构。举例来说,假设某个自编码神经网络的输入\textstyle x 是一张\textstyle 10 \times 10 图像(共100个像素)的像素灰度值,于是\textstyle n=100 ,其隐藏层\textstyle L_2 中有50个隐藏神经元。注意,输出也是100维的\textstyle y \in \Re^{100} 。由于只有50个隐藏神经元,我们迫使自编码神经网络去学习输入数据的压缩表示,也就是说,它必须从50维的隐藏神经元激活度向量\textstyle a^{(2)} \in \Re^{50}重构出100维的像素灰度值输入\textstyle x 。如果网络的输入数据是完全随机的,比如每一个输入\textstyle x_i 都是一个跟其它特征完全无关的独立同分布高斯随机变量,那么这一压缩表示将会非常难学习。但是如果输入数据中隐含着一些特定的结构,比如某些输入特征是彼此相关的,那么这一算法就可以发现输入数据中的这些相关性。事实上,这一简单的自编码神经网络通常可以学习出一个跟主元分析(PCA)结果非常相似的输入数据的低维表示。

我们刚才的论述是基于隐藏神经元数量较小的假设。但是即使隐藏神经元的数量较大(可能比输入像素的个数还要多),我们仍然通过给自编码神经网络施加一些其他的限制条件来发现输入数据中的结构。具体来说,如果我们给隐藏神经元加入稀疏性限制,那么自编码神经网络即使在隐藏神经元数量较多的情况下仍然可以发现输入数据中一些有趣的结构。

稀疏性可以被简单地解释如下。如果当神经元的输出接近于1的时候我们认为它被激活,而输出接近于0的时候认为它被抑制,那么使得神经元大部分的时间都是被抑制的限制则被称作稀疏性限制。这里我们假设的神经元的激活函数是sigmoid函数。如果你使用tanh作为激活函数的话,当神经元输出为-1的时候,我们认为神经元是被抑制的。

注意到 \textstyle a^{(2)}_j 表示隐藏神经元\textstyle j 的激活度,但是这一表示方法中并未明确指出哪一个输入\textstyle x 带来了这一激活度。所以我们将使用\textstyle a^{(2)}_j(x) 来表示在给定输入为\textstyle x 情况下,自编码神经网络隐藏神经元\textstyle j 的激活度。进一步,让

\begin{align}\hat\rho_j = \frac{1}{m} \sum_{i=1}^m \left[ a^{(2)}_j(x^{(i)}) \right]\end{align}

表示隐藏神经元 \textstyle j 的平均活跃度(在训练集上取平均)。我们可以近似的加入一条限制

\begin{align}\hat\rho_j = \rho,\end{align}

其中, \textstyle \rho稀疏性参数,通常是一个接近于0的较小的值(比如\textstyle \rho = 0.05 )。换句话说,我们想要让隐藏神经元\textstyle j 的平均活跃度接近0.05。为了满足这一条件,隐藏神经元的活跃度必须接近于0。

为了实现这一限制,我们将会在我们的优化目标函数中加入一个额外的惩罚因子,而这一惩罚因子将惩罚那些 \textstyle \hat\rho_j\textstyle \rho 有显著不同的情况从而使得隐藏神经元的平均活跃度保持在较小范围内。惩罚因子的具体形式有很多种合理的选择,我们将会选择以下这一种:

\begin{align}\sum_{j=1}^{s_2} \rho \log \frac{\rho}{\hat\rho_j} + (1-\rho) \log \frac{1-\rho}{1-\hat\rho_j}.\end{align}

这里, \textstyle s_2 是隐藏层中隐藏神经元的数量,而索引\textstyle j 依次代表隐藏层中的每一个神经元。如果你对相对熵(KL divergence)比较熟悉,这一惩罚因子实际上是基于它的。于是惩罚因子也可以被表示为

\begin{align}\sum_{j=1}^{s_2} {\rm KL}(\rho || \hat\rho_j),\end{align}

其中 \textstyle {\rm KL}(\rho || \hat\rho_j) = \rho \log \frac{\rho}{\hat\rho_j} + (1-\rho) \log \frac{1-\rho}{1-\hat\rho_j} 是一个以\textstyle \rho 为均值和一个以\textstyle \hat\rho_j 为均值的两个伯努利随机变量之间的相对熵。相对熵是一种标准的用来测量两个分布之间差异的方法。(如果你没有见过相对熵,不用担心,所有你需要知道的内容都会被包含在这份笔记之中。)


这一惩罚因子有如下性质,当 \textstyle \hat\rho_j = \rho\textstyle {\rm KL}(\rho || \hat\rho_j) = 0 ,并且随着\textstyle \hat\rho_j\textstyle \rho 之间的差异增大而单调递增。举例来说,在下图中,我们设定\textstyle \rho = 0.2 并且画出了相对熵值\textstyle {\rm KL}(\rho || \hat\rho_j) 随着\textstyle \hat\rho_j 变化的变化。

我们可以看出,相对熵在 \textstyle \hat\rho_j = \rho 时达到它的最小值0,而当\textstyle \hat\rho_j 靠近0或者1的时候,相对熵则变得非常大(其实是趋向于\textstyle \infty)。所以,最小化这一惩罚因子具有使得\textstyle \hat\rho_j 靠近\textstyle \rho 的效果。现在,我们的总体代价函数可以表示为

\begin{align}J_{\rm sparse}(W,b) = J(W,b) + \beta \sum_{j=1}^{s_2} {\rm KL}(\rho || \hat\rho_j),\end{align}

其中 \textstyle J(W,b) 如之前所定义,而\textstyle \beta 控制稀疏性惩罚因子的权重。\textstyle \hat\rho_j 项则也(间接地)取决于\textstyle W,b ,因为它是隐藏神经元\textstyle j 的平均激活度,而隐藏层神经元的激活度取决于\textstyle W,b


为了对相对熵进行导数计算,我们可以使用一个易于实现的技巧,这只需要在你的程序中稍作改动即可。具体来说,前面在后向传播算法中计算第二层( \textstyle l=2 )更新的时候我们已经计算了

\begin{align}\delta^{(2)}_i = \left( \sum_{j=1}^{s_{2}} W^{(2)}_{ji} \delta^{(3)}_j \right) f'(z^{(2)}_i),\end{align}

现在我们将其换成

\begin{align}\delta^{(2)}_i =  \left( \left( \sum_{j=1}^{s_{2}} W^{(2)}_{ji} \delta^{(3)}_j \right)+ \beta \left( - \frac{\rho}{\hat\rho_i} + \frac{1-\rho}{1-\hat\rho_i} \right) \right) f'(z^{(2)}_i) .\end{align}

就可以了。


有一个需要注意的地方就是我们需要知道 \textstyle \hat\rho_i 来计算这一项更新。所以在计算任何神经元的后向传播之前,你需要对所有的训练样本计算一遍前向传播,从而获取平均激活度。如果你的训练样本可以小到被整个存到内存之中(对于编程作业来说,通常如此),你可以方便地在你所有的样本上计算前向传播并将得到的激活度存入内存并且计算平均激活度 。然后你就可以使用事先计算好的激活度来对所有的训练样本进行后向传播的计算。如果你的数据量太大,无法全部存入内存,你就可以扫过你的训练样本并计算一次前向传播,然后将获得的结果累积起来并计算平均激活度\textstyle \hat\rho_i (当某一个前向传播的结果中的激活度\textstyle a^{(2)}_i 被用于计算平均激活度\textstyle \hat\rho_i 之后就可以将此结果删除)。然后当你完成平均激活度\textstyle \hat\rho_i 的计算之后,你需要重新对每一个训练样本做一次前向传播从而可以对其进行后向传播的计算。对于后一种情况,你对每一个训练样本需要计算两次前向传播,所以在计算上的效率会稍低一些。



这篇关于sparse Autoencoder(3)---自编码算法与稀疏性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491617

相关文章

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

VSCode中C/C++编码乱码问题的两种解决方法

《VSCode中C/C++编码乱码问题的两种解决方法》在中国地区,Windows系统中的cmd和PowerShell默认编码是GBK,但VSCode默认使用UTF-8编码,这种编码不一致会导致在VSC... 目录问题方法一:通过 Code Runner 插件调整编码配置步骤方法二:在 PowerShell

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系