【tph-yolov5】使用tph-Yolov5训练自己的数据集

2023-12-14 04:10
文章标签 数据 使用 训练 yolov5 tph

本文主要是介绍【tph-yolov5】使用tph-Yolov5训练自己的数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、环境配置及源代码运行

推荐参考我前一篇博客

二、数据集准备

1、新建数据集文件夹dataset
因为其他项目还要用到这个数据,所以我这里是单独建了一个数据集文件夹,没这个要求的可讲文件夹直接放在你的TPH-Yolov5目录下。
2、在dataset下新建两个文件夹images和annotations
**images:**用于存放要标准的图片(jpg格式);
**annotations:**用于存放图片标注文件,采用voc格式。
在这里插入图片描述3、图片重命名
因为原始图片命名比较乱,这里我在数据标准前先将数据统一命名,也方便后面数据检查。
重命名前图片名称
重命名前图片名称重命名后图片名称
在这里插入图片描述

三、使用labelImg标注图片

1.安装labelImg
labelImg官方下载连接
官方提供了各种安装方法,本人直接下载了打包软件。如果你无法进入github,这里给出了百度网盘链接。
标注文件链接:https://pan.baidu.com/s/1hFX4j_dZAamU9YIEp3uiZA
提取码:70al
2.使用labelImag
官方安装版本运行比较麻烦,请按照官方说明文件进行。建议直接下载我给的链接文件,点开后可直接运行。

  1. 自动保存标注文件
    点击上面导航栏view,勾选auto saving自动保存,标注文件存储格式可自行选择,默认为XML格式,可更改为yolo,这里因为其他项目需求直接使用默认格式,后面再转为yolo。
    在这里插入图片描述
  2. 物体标注
    点击左方边栏或者屏幕右键选择Create RectBox即可进行标注。标注物体时尽可能拟合物体外框就行,具体要求参考个人项目标准。
    在这里插入图片描述
  3. 快捷键推荐
    A:移动到上一张图片
    D:移动到下一张图片
    W:标注图片

四、划分数据集以及修改配置文件

1、划分训练集、验证集、测试集
程序如下:

# coding:utf-8import os
import random
import argparseparser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()trainval_percent = 1.0  # 训练集和验证集所占比例。 这里没有划分测试集
train_percent = 0.9     # 训练集所占比例,可自己进行调整
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')for i in list_index:name = total_xml[i][:-4] + '\n'if i in trainval:file_trainval.write(name)if i in train:file_train.write(name)else:file_val.write(name)else:file_test.write(name)file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

划分后结果如图,这里我没有单独划分测试集,有需要的朋友可自行修改。

在这里插入图片描述2、XML格式转yolo_txt格式
代码如下:(可按照注释进行修改)

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ["meter"]   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):
#输入输出文件夹,根据实际情况进行修改in_file = open('/home/hm/LFY/dataset/annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('/home/hm/LFY/dataset/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').text#difficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('/home/hm/LFY/dataset/labels/'):os.makedirs('/home/hm/LFY/dataset/labels/')
#上一步得到的文件名称image_ids = open('/home/hm/LFY/dataset/split/demo/%s.txt' % (image_set)).read().strip().split()
#生成yolo标注文件的绝对路径,方便之后模型读取图片和标签  if not os.path.exists('/home/hm/LFY/dataset/dataSet_path/'):os.makedirs('/home/hm/LFY/dataset/dataSet_path/')list_file = open('dataSet_path/%s.txt' % (image_set), 'w')# 这行路径不需更改,这是相对路径for image_id in image_ids:list_file.write('/home/hm/LFY/dataset/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

转换完之后会生成一个labels文件夹,里面为不同图像yolo格式的标注文件。每个图像都对应一个txt文件,文件每一行为一个目标信息,第一列为目标类别,往后依次是x_center, y_center, width, height。
在这里插入图片描述

dataSet_path文件夹包含三个数据集的txt文件,train.txt等txt文件为划分后图像所在位置的绝对路径,如train.txt就含有所有训练集图像的绝对路径。

在这里插入图片描述
存储了图片的绝对路径,可按照自己的需求更改。

在这里插入图片描述
3、配置文件
在tph-yolov5目录的data文件夹下新建一个dataset.yaml文件(自定义命名),用记事本打开。输入内容:训练集以及验证集(train.txt和val.txt)的绝对路径(前一步通过xml_to_yolo.py生成的),然后就是目标的类别数目和类别名称。

在这里插入图片描述

给出模板:冒号后面需要加空格

train: D:/Yolov5/yolov5/VOCData/dataSet_path/train.txt
val: D:/Yolov5/yolov5/VOCData/dataSet_path/val.txt# number of classes
nc: 2# class names
names: ["light", "post"]

4、聚类获得先验框

  • 4.1生成anchors文件

在dataset目录下创建两个程序kmeans.py和clauculate_anchors.py,不需要运行 kmeans.py,运行 clauculate_anchors.py 即可。
kmeans.py 程序如下:这不需要运行,也不需要更改。

import numpy as npdef iou(box, clusters):"""Calculates the Intersection over Union (IoU) between a box and k clusters.:param box: tuple or array, shifted to the origin (i. e. width and height):param clusters: numpy array of shape (k, 2) where k is the number of clusters:return: numpy array of shape (k, 0) where k is the number of clusters"""x = np.minimum(clusters[:, 0], box[0])y = np.minimum(clusters[:, 1], box[1])if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:raise ValueError("Box has no area")    # 如果报这个错,可以把这行改成pass即可intersection = x * ybox_area = box[0] * box[1]cluster_area = clusters[:, 0] * clusters[:, 1]iou_ = intersection / (box_area + cluster_area - intersection)return iou_def avg_iou(boxes, clusters):"""Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.:param boxes: numpy array of shape (r, 2), where r is the number of rows:param clusters: numpy array of shape (k, 2) where k is the number of clusters:return: average IoU as a single float"""return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])def translate_boxes(boxes):"""Translates all the boxes to the origin.:param boxes: numpy array of shape (r, 4):return: numpy array of shape (r, 2)"""new_boxes = boxes.copy()for row in range(new_boxes.shape[0]):new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])return np.delete(new_boxes, [0, 1], axis=1)def kmeans(boxes, k, dist=np.median):"""Calculates k-means clustering with the Intersection over Union (IoU) metric.:param boxes: numpy array of shape (r, 2), where r is the number of rows:param k: number of clusters:param dist: distance function:return: numpy array of shape (k, 2)"""rows = boxes.shape[0]distances = np.empty((rows, k))last_clusters = np.zeros((rows,))np.random.seed()# the Forgy method will fail if the whole array contains the same rowsclusters = boxes[np.random.choice(rows, k, replace=False)]while True:for row in range(rows):distances[row] = 1 - iou(boxes[row], clusters)nearest_clusters = np.argmin(distances, axis=1)if (last_clusters == nearest_clusters).all():breakfor cluster in range(k):clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)last_clusters = nearest_clustersreturn clustersif __name__ == '__main__':a = np.array([[1, 2, 3, 4], [5, 7, 6, 8]])print(translate_boxes(a))

运行clauculate_anchors.p后,会调用kmeans.py聚类生成新的anchors。

# -*- coding: utf-8 -*-
# 根据标签文件求先验框import os
import numpy as np
import xml.etree.cElementTree as et
from kmeans import kmeans, avg_iouFILE_ROOT = "D:/Yolov5/yolov5/VOCData/"     # 根路径
ANNOTATION_ROOT = "Annotations"   # 数据集标签文件夹路径
ANNOTATION_PATH = FILE_ROOT + ANNOTATION_ROOTANCHORS_TXT_PATH = "D:/Yolov5/yolov5/VOCData/anchors.txt"   #anchors文件保存位置CLUSTERS = 9
CLASS_NAMES = ['light', 'post']   #类别名称def load_data(anno_dir, class_names):xml_names = os.listdir(anno_dir)boxes = []for xml_name in xml_names:xml_pth = os.path.join(anno_dir, xml_name)tree = et.parse(xml_pth)width = float(tree.findtext("./size/width"))height = float(tree.findtext("./size/height"))for obj in tree.findall("./object"):cls_name = obj.findtext("name")if cls_name in class_names:xmin = float(obj.findtext("bndbox/xmin")) / widthymin = float(obj.findtext("bndbox/ymin")) / heightxmax = float(obj.findtext("bndbox/xmax")) / widthymax = float(obj.findtext("bndbox/ymax")) / heightbox = [xmax - xmin, ymax - ymin]boxes.append(box)else:continuereturn np.array(boxes)if __name__ == '__main__':anchors_txt = open(ANCHORS_TXT_PATH, "w")train_boxes = load_data(ANNOTATION_PATH, CLASS_NAMES)count = 1best_accuracy = 0best_anchors = []best_ratios = []for i in range(10):      ##### 可以修改,不要太大,否则时间很长anchors_tmp = []clusters = kmeans(train_boxes, k=CLUSTERS)idx = clusters[:, 0].argsort()clusters = clusters[idx]# print(clusters)for j in range(CLUSTERS):anchor = [round(clusters[j][0] * 640, 2), round(clusters[j][1] * 640, 2)]anchors_tmp.append(anchor)print(f"Anchors:{anchor}")temp_accuracy = avg_iou(train_boxes, clusters) * 100print("Train_Accuracy:{:.2f}%".format(temp_accuracy))ratios = np.around(clusters[:, 0] / clusters[:, 1], decimals=2).tolist()ratios.sort()print("Ratios:{}".format(ratios))print(20 * "*" + " {} ".format(count) + 20 * "*")count += 1if temp_accuracy > best_accuracy:best_accuracy = temp_accuracybest_anchors = anchors_tmpbest_ratios = ratiosanchors_txt.write("Best Accuracy = " + str(round(best_accuracy, 2)) + '%' + "\r\n")anchors_txt.write("Best Anchors = " + str(best_anchors) + "\r\n")anchors_txt.write("Best Ratios = " + str(best_ratios))anchors_txt.close()

会生成anchors文件。如果生成文件为空,重新运行即可。

  • 4.2修改模型配置文件
    在tph-yolov5目录的models文件夹下是模型的配置文件,有很多版本,官方选择的训练版本是yolov5l-xs-tph.yaml,这里我们也同样选用这个版本。
    这里我们需要修改两个参数
    首先把nc改成自己的标注类别数;然后需要将anchors修改为上一步得到的结果(此处需要取整,向上/向下取整都可)。保持yaml中anchors格式不变,按照顺序一一对应即可。

五、模型训练

  1. 开始训练
    回到tph-yolov5目录下查看train.py程序,注意查看weights、cfg、data、hyp、epochs、batchsize、imgsz、device这几个参数,根据实际情况进行修改。
    训练命令:

python train.py --img 1536 --adam --batch 4 --epochs 80 --data ./data/VisDrone.yaml --weights yolov5l.pt --hyp data/hyps/hyp.VisDrone.yaml --cfg models/yolov5l-xs-tph.yaml --name v5l-xs-tph

上面是官方命令,每一项可根据自身实际情况进行修改。
参数解释:
img:这里我暂时不明白,先猜测一下是输入图片大小。
batch、epochs:这个不用多说了
data :存储训练、测试数据的文件
weights:预训练权重
hyp:一些参数值,可不更改
cfg:网络配置文件
name:命名

  • 2.训练过程

下面是我训练的截图,只是一个示范。模型的P、R都是零,可能是其他地方出现了问题,之后在新的博客说明原因。此处只是给出一个可以训练的完整路程。
在这里插入图片描述
模型训练结果会存放在yolov5目录下的runs/train/下。
到此一个训练的过程就结束了,后续先解决上面P、R为零的问题。在进行代码的解析和验证以及模型评估。

六、参考链接

Yolov5训练自己的数据集(详细完整版)

七、补充

上课的时候随便随便试了一下,问题解决了。所以决定把测试过程写完结束。

  • 相关问题
    1、OOM
    如果出现OOM,可尝试调小图片或者减少batch-size。如果不行可以降低epoch,或者降低线程workes,其默认为8。

建议第一次试用的时候图片数量为50+,epoch在50以上。我这样就解决了上面P、R为零的问题。

在这里插入图片描述图中cls为零,是因为我采用的是单类图片,即图片只有一个类别,所以cls本就为0。
2、重复训练
这里我没遇到,提前写着预备一下,可清除缓存。
在这里插入图片描述

  • 测试效果

可使用刚刚训练好的模型best.pt来测试,模型存储在tph-yolov5目录下的runs/train/下。

python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640

测试结果保存在tph-yolov5/runs/detect/exp下。

到此,基础的跑通就结束了,接下来就是加大数据集然后进行模型优化了。

这篇关于【tph-yolov5】使用tph-Yolov5训练自己的数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491109

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超