【算法每日一练]-动态规划(保姆级教程 篇13)POJ2686马车旅行 #POJ3254 玉米田 #POJ1185:炮兵阵地

本文主要是介绍【算法每日一练]-动态规划(保姆级教程 篇13)POJ2686马车旅行 #POJ3254 玉米田 #POJ1185:炮兵阵地,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

今天知识点

dp每个票的使用情况,然后更新此票状态下的最优解,dp到没有票就行了

dp每行的种植状态,从i-1行进行不断转移

dp每行的种植状态,从i-1和i-2行进行不断转移

POJ2686马车旅行

思路:

POJ3254 玉米田

思路:

POJ1185:炮兵阵地

思路:


        

        

前置知识:

基于状态压缩下的集合操作:
1.空集:                                                               0

2.只含有第i个元素的集合{i}:                          1<<i

3.含有全部n个元素的集合{0,1,2,....,n-1}:  (1<<n)-1

4.判断第i个元素是否属于集合S:            if(S>>i&1)

5.向集合中加入第i个元素S ∪ {i}:                S|1<<i

6.从集合中除去第i个元素S - {i}:            S&~(1<<i)

7.集合S和T的并集S∪T:                                 S | T

8.集合S和T的交集S∩T:                                S & T

        

        

POJ2686马车旅行

有一个公路网连接这些城市,可以乘坐马车通行。乘坐马车需要一张票,旅行者有许多车票,每张票上都标记了马的数量,马越多跑的越快。
你应该考虑如果使用这些票使得在最短时间内把旅行者从出发点他带到目的地的最佳路线。
假设一下条件:
1.通过公路直接连接的两个城市之间只能使用一张车票,且每张票只能用一次
2.乘马车的时间等于两城市之间的距离除以马的数量
3.忽略换乘所需的时间

输入:
2 4 4 2 1
3 1
2 3 3
1 3 3
4 1 2
4 2 5
2 4 3 4 1
5 5
1 2 10
2 3 10
3 4 10
输出:
3.667
impossible

        

思路:

因为每跑一次票的状态就变动一次,所以我们设置dp[s][u]表示达到当前u点且持有s车票的最小花费,其中s是票的二进制状态。

        

状态转移:从u到v,当前点v的状态s一定最小的dp[s'][u]+dis/t转移过来(其中s=s'&~(1<<i))

        
dp[s&~(1<<i)][v]=min(dp[s&~(1<<i)][v],dp[s][u]+dis[u][v]/t[i])  

        
转移顺序:s从大到小,因为大的状态必须要先于小的先确定下来,所以s一定在最外层。然后是每个起点到每个终点使用每张票来去更新每个点,也就是维护该状态下的最优解
        

#include <bits/stdc++.h>
using namespace std;
const double inf=0x3f3f3f3f;
double ans;
int n,m,p,a,b;
int t[20],dis[50][50];
double dp[1<<10][32];//dp[s][u]表示达到当前u点且持有s车票的最小花费void solve(){for(int i=0;i<(1<<(n+1));i++)for(int j=0;j<=m+1;j++)dp[i][j]=inf;dp[(1<<n)-1][a]=0;//起点状态ans=inf;for(int s=(1<<n)-1;s>=0;s--){//状态从大到小for(int u=1;u<=m;u++)//遍历每个城市for(int i=0;i<n;i++)//遍历每种车票可用就用if((s>>i)&1)for(int v=1;v<=m;v++)//尾点城市if(dis[u][v]>=0){//如果能走,就把第i张票置零dp[s&~(1<<i)][v]=min(dp[s&~(1<<i)][v],dp[s][u]+(double)dis[u][v]/t[i]);}ans=min(ans,dp[s][b]);}} 
int main(){while(cin>>n>>m>>p>>a>>b){if(n+m+p+a+b==0)break;for(int i=0;i<n;i++){scanf("%d",&t[i]);//每张车票的数量}memset(dis,-1,sizeof(dis));//初始化成无穷大也行for(int i=0;i<p;i++){//p条变int u,v,w;scanf("%d%d%d",&u,&v,&w);dis[u][v]=dis[v][u]=w;}solve();if(ans==inf)printf("Impossible\n");else printf("%.3lf\n",ans);}
}

        

        

POJ3254 玉米田

由m*n(m<12,n<12)的方格组成的玉米田,要在这些方格上种上玉米,有些方格是贫瘠的(0表示),有些是肥沃的(1表示),贫瘠的不能种植。
另外在种植的时候不能在相邻的方格种上玉米,也就是不能共享边。问一共有多少种种植方案。

输入
2 3 
1 1 1
0 1 0

        

思路:

每一行的状态都和上一行的状态有关,状态数有太多因此需要进行状态压缩
首先将每行的状态压缩成j的二进制状态。然后我们进行dp行,设置dp[i][j]表示第i行的第j种状态时对应的前i行的方案数。
转移方程:dp[i][j]=(dp[i][j]+dp[i-1][k])%mod; (k是第i-1行所有的可行状态)

在确定每行转移的时候都要考虑:
1.横向方案    2.横向方案是否和地图匹配     3.是否和i-1行冲突

        
存每行的可能状态:相邻的两列不能都是1,那就看x&x<<1是不是0(就是可能的横向方案)
是否和i-1冲突:种表示1,不种表示0 那么在判断两行合法性时,不能出现有一列同1(两行都种),所以x&y=0是合法的
存图:肥沃我们用0表示,贫瘠用1表示  那么判断此地和此种法合法性时,不能出现同1(在贫瘠的地方种),所以x&y=0是合法的
(如果不这样的话0和1与是0,你就分不清了)

        
【注意】:外面每行i循环一次,其次里面是第i行的每个状态j循环一次(找到合适的j),最后是第i-1行的每个状态k循环一次(找到每个合适的k),共O(n^3)

#include <bits/stdc++.h>
using namespace std;
const int mod=1e8;
int sta[600],top,n,m;
int dp[20][600],cur[20];bool check(int x){if(x&x<<1)return 0;return 1;
} void init(){//预处理top=0;for(int i=0;i<(1<<n);i++){//记录所有的没有相邻1的种法if(check(i))sta[++top]=i;}
}void solve(){for(int j=1;j<=top;j++){//处理第一行if(!(sta[j]&cur[1])) dp[1][j]=1;}for(int i=2;i<=m;i++){//处理剩余行for(int j=1;j<=top;j++){//sta[j]是第i行的每种种法if(sta[j]&cur[i]) continue;//检测当前状态是否和当前行匹配for(int k=1;k<=top;k++){//sta[k]是i-1行的每种法if(sta[k]&cur[i-1])continue;//检测当前状态和当前行是否匹配if(sta[j]&sta[k])continue;//第i行和第i-1行有冲突dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;}}}
}int main(){while(cin>>m>>n){//m是行n是列init();int num;memset(dp,0,sizeof(dp));for(int i=1;i<=m;i++){cur[i]=0;for(int j=1;j<=n;j++){scanf("%d",&num);if(num==0)cur[i]+=(1<<(n-j));//读入地图 1变0,0变1}}solve();int ans=0;for(int j=1;j<=top;j++)ans=(ans+dp[m][j])%mod;//最后一行所有方案数加起来cout<<ans;}
}

        

        

        

POJ1185:炮兵阵地

在N*M(N<100,M<10)的地图上布置炮兵,H格子为山地不能布置,P格子为平原可以布置。炮兵的攻击范围是沿横向左右各两格,沿纵向上下个两格子
炮兵之间不能误伤。问在整个地图中最多能拜访多少个炮兵?
5 4
PHPP
PPHH
PPPP
PHPP
PHHP

        

思路:

        
首先要对行进行状态压缩(对列的话太大了,枚举2^100还不如不压缩呢),我们每次确定行的状态都需要考虑:
1.横向方案    2.横向方案是否和地图匹配     3.是否和i-1行i-2行冲突


设置dp[i][j][k]表示第i行为第j状态,第i-1行为第k状态时 对应的前i行放置的最大炮兵数。
转移方程:dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][t]+num[j]);

(j是第i行的方案,k是第i-1行的方案,t是i-2行的方案)

        
存每行的可能状态:左右相邻1个间隔和2个间隔都不能炮兵(就是可能的横向方案)
存图:(1,1)开始存。0表示平原,1表示山地,那么在放置的时候不能出现同1(在山地放炮兵),所以x&y=0是合法的(保证合法的是0就行了)
是否冲突:第i行和第i-1行,第i-2行 不能出现有一列同1(两行都放炮兵),所以x&y=0是合法的

        
【注意】:外面每行i循环一次,其次里面是第i行的每个状态j循环一次(找到合适的j),然后是第i-1行的每个状态k循环一次(供第i行找到合适的k),
接着是第i-2行的每个状态t循环一次(供第i-1行找到合适的t)

#include <bits/stdc++.h>
using namespace std;
int n,m,top;
char mp[110][20];
int num[70];
int stk[70],cur[70];//stk表示横向可能的方案,cur是我们存的地图行
int dp[110][70][70];bool check(int x){if(x&(x<<1))return 0;//相邻1间隔是否合法if(x&(x<<2))return 0;//相邻2间隔是否合法return 1;
}void init(){//统计所有的可能合法状态,最多60种top=0;for(int i=0;i<(1<<m);i++){if(check(i))stk[top++]=i;}
}int count(int x){//统计x二进制中1的个数int cnt=0;while(x){if(x&1)cnt++;x=x>>1;}
//	while(x){//这个更快
//		cnt++;
//		x&=(x-1);
//	}	return cnt;
}int solve(){int ans=0;memset(dp,-1,sizeof(dp));for(int j=0;j<top;j++){//初始化第一行的状态num[j]=count(stk[j]);if(!(stk[j]&cur[1])){//和地图匹配dp[1][j][0]=num[j];//第一行状态为j,上一行状态为0(知道为啥从(1,1)开始初始化了把)ans=max(ans,dp[1][j][0]);}}for(int i=2;i<=n;i++){//处理每一行for(int j=0;j<top;j++){//遍历第i行的可能方案if(stk[j]&cur[i])continue;//是否和地图匹配for(int k=0;k<top;k++){//遍历第i-1行的可能方案if(stk[j]&stk[k])continue;//此行和上一行是否匹配(不用再判断和地图是否匹配,不匹配dp是-1,不影响的)for(int t=0;t<top;t++){//遍历上二行可能方案if(stk[j]&stk[t])continue;//此行和上二行是否匹配dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][t]+num[j]);}if(i==n)ans=max(ans,dp[i][j][k]);//不要放在外面套3个for取max}}}return ans;
}
int main(){while(cin>>n>>m){init();for(int i=1;i<=n;i++){scanf("%s",mp[i]+1);//加1是为了从1下标开始存}for(int i=1;i<=n;i++){cur[i]=0;for(int j=1;j<=m;j++){if(mp[i][j]=='H')//同样的,不能放的地方存1cur[i]+=(1<<(m-j));}}cout<<solve();}
}

这篇关于【算法每日一练]-动态规划(保姆级教程 篇13)POJ2686马车旅行 #POJ3254 玉米田 #POJ1185:炮兵阵地的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/490262

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

Centos7安装JDK1.8保姆版

工欲善其事,必先利其器。这句话同样适用于学习Java编程。在开始Java的学习旅程之前,我们必须首先配置好适合的开发环境。 通过事先准备好这些工具和配置,我们可以避免在学习过程中遇到因环境问题导致的代码异常或错误。一个稳定、高效的开发环境能够让我们更加专注于代码的学习和编写,提升学习效率,减少不必要的困扰和挫折感。因此,在学习Java之初,投入一些时间和精力来配置好开发环境是非常值得的。这将为我