POJ 2585 Window Pains(窗口的颜色显示问题,拓扑排序,经典题目)

本文主要是介绍POJ 2585 Window Pains(窗口的颜色显示问题,拓扑排序,经典题目),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Window Pains(点击>>原POJ)
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 1980 Accepted: 998

Description

Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows: 
11..
11..
....
....
.22.
.22.
....
....
..33
..33
....
....
....
44..
44..
....
....
.55.
.55.
....
....
..66
..66
....
....
....
77..
77..
....
....
.88.
.88.
....
....
..99
..99
When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window  1 and then window  2 were brought to the foreground, the resulting representation would be:
122?
122?
????
????
If window 4 were then brought to the foreground:
122?
442?
44??
????
. . . and so on . . . 
Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets. 

A single data set has 3 components: 
  1. Start line - A single line: 
    START 

  2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space. 
  3. End line - A single line: 
    END 

After the last data set, there will be a single line: 
ENDOFINPUT 

Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

Output

For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement: 

THESE WINDOWS ARE CLEAN 

Otherwise, the output will be a single line with the statement: 
THESE WINDOWS ARE BROKEN 

Sample Input

START
1 2 3 3
4 5 6 6
7 8 9 9
7 8 9 9
END
START
1 1 3 3
4 1 3 3
7 7 9 9
7 7 9 9
END
ENDOFINPUT

Sample Output

THESE WINDOWS ARE CLEAN
THESE WINDOWS ARE BROKEN

Source

South Central USA 2003


i题意:

显示颜色的问题,一种颜色有一种显示的区域,大的可以覆盖小的。给定几个矩阵,问显示效果怎么样,好的话输出一句,否则输出另外一句。

具体参考书籍《图论》哈工大出版社。


i思路:

每个显色的数字位置如图:

这可是学姐在黑板上一点点画出来的图(这是我用EXCEL打的),讲题挺认真的,负责。



i参考代码:

实现方式:二维数组

#include<stdio.h>
#include<string.h>
const int MYDD=1103;int indegree[MYDD];
int map[113][113];
int dx[]= {0,1,0,1};
int dy[]= {0,0,1,1}; //移动的方向,注意不同于搜索
int local[10][2]= {-1,-1, 0,0, 0,1, 0,2, 1,0, 1,1, 1,2, 2,0, 2,1, 2,2};
//窗口的固定位置
bool TopoSort() {int now,flag;// now 当前选中的节点;flag 标记合法性for(int j=1; j<=9; j++) {flag=0;for(int i=1; i<=9; i++) {if(!indegree[i]) {flag=1;now=i;break;//入度为 0 即前驱}}if(!flag)   return false;indegree[now]=-1;//标记前驱数量为 -1for(int i=1; i<=9; i++)//当前节点的后继节点入度 -1if(map[now][i])     indegree[i]--;}return true;
}int main() {char C[32];while(1) {scanf("%s",C);if(!strcmp(C,"ENDOFINPUT"))	break;//结束测试数据memset(indegree,0,sizeof(indegree));//数组的初始化memset(map,0,sizeof(map));int screen[16][16];for(int j=0; j<4; j++)for(int k=0; k<4; k++)scanf("%d",&screen[j][k]);scanf("%s",C);for(int j=1; j<=9; j++) {for(int k=0; k<4; k++) {int gx=local[j][0]+dx[k];int gy=local[j][1]+dy[k];int now=screen[gx][gy];//当前屏幕显示的数字if(now!=j&&!map[j][now]) {map[j][now]=1;indegree[now]++;}}
//				printf("**********\n");}if(TopoSort())      puts("THESE WINDOWS ARE CLEAN");else                puts("THESE WINDOWS ARE BROKEN");}return 0;
}


这篇关于POJ 2585 Window Pains(窗口的颜色显示问题,拓扑排序,经典题目)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489805

相关文章

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam