POJ 2585 Window Pains(窗口的颜色显示问题,拓扑排序,经典题目)

本文主要是介绍POJ 2585 Window Pains(窗口的颜色显示问题,拓扑排序,经典题目),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Window Pains(点击>>原POJ)
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 1980 Accepted: 998

Description

Boudreaux likes to multitask, especially when it comes to using his computer. Never satisfied with just running one application at a time, he usually runs nine applications, each in its own window. Due to limited screen real estate, he overlaps these windows and brings whatever window he currently needs to work with to the foreground. If his screen were a 4 x 4 grid of squares, each of Boudreaux's windows would be represented by the following 2 x 2 windows: 
11..
11..
....
....
.22.
.22.
....
....
..33
..33
....
....
....
44..
44..
....
....
.55.
.55.
....
....
..66
..66
....
....
....
77..
77..
....
....
.88.
.88.
....
....
..99
..99
When Boudreaux brings a window to the foreground, all of its squares come to the top, overlapping any squares it shares with other windows. For example, if window  1 and then window  2 were brought to the foreground, the resulting representation would be:
122?
122?
????
????
If window 4 were then brought to the foreground:
122?
442?
44??
????
. . . and so on . . . 
Unfortunately, Boudreaux's computer is very unreliable and crashes often. He could easily tell if a crash occurred by looking at the windows and seeing a graphical representation that should not occur if windows were being brought to the foreground correctly. And this is where you come in . . .

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets. 

A single data set has 3 components: 
  1. Start line - A single line: 
    START 

  2. Screen Shot - Four lines that represent the current graphical representation of the windows on Boudreaux's screen. Each position in this 4 x 4 matrix will represent the current piece of window showing in each square. To make input easier, the list of numbers on each line will be delimited by a single space. 
  3. End line - A single line: 
    END 

After the last data set, there will be a single line: 
ENDOFINPUT 

Note that each piece of visible window will appear only in screen areas where the window could appear when brought to the front. For instance, a 1 can only appear in the top left quadrant.

Output

For each data set, there will be exactly one line of output. If there exists a sequence of bringing windows to the foreground that would result in the graphical representation of the windows on Boudreaux's screen, the output will be a single line with the statement: 

THESE WINDOWS ARE CLEAN 

Otherwise, the output will be a single line with the statement: 
THESE WINDOWS ARE BROKEN 

Sample Input

START
1 2 3 3
4 5 6 6
7 8 9 9
7 8 9 9
END
START
1 1 3 3
4 1 3 3
7 7 9 9
7 7 9 9
END
ENDOFINPUT

Sample Output

THESE WINDOWS ARE CLEAN
THESE WINDOWS ARE BROKEN

Source

South Central USA 2003


i题意:

显示颜色的问题,一种颜色有一种显示的区域,大的可以覆盖小的。给定几个矩阵,问显示效果怎么样,好的话输出一句,否则输出另外一句。

具体参考书籍《图论》哈工大出版社。


i思路:

每个显色的数字位置如图:

这可是学姐在黑板上一点点画出来的图(这是我用EXCEL打的),讲题挺认真的,负责。



i参考代码:

实现方式:二维数组

#include<stdio.h>
#include<string.h>
const int MYDD=1103;int indegree[MYDD];
int map[113][113];
int dx[]= {0,1,0,1};
int dy[]= {0,0,1,1}; //移动的方向,注意不同于搜索
int local[10][2]= {-1,-1, 0,0, 0,1, 0,2, 1,0, 1,1, 1,2, 2,0, 2,1, 2,2};
//窗口的固定位置
bool TopoSort() {int now,flag;// now 当前选中的节点;flag 标记合法性for(int j=1; j<=9; j++) {flag=0;for(int i=1; i<=9; i++) {if(!indegree[i]) {flag=1;now=i;break;//入度为 0 即前驱}}if(!flag)   return false;indegree[now]=-1;//标记前驱数量为 -1for(int i=1; i<=9; i++)//当前节点的后继节点入度 -1if(map[now][i])     indegree[i]--;}return true;
}int main() {char C[32];while(1) {scanf("%s",C);if(!strcmp(C,"ENDOFINPUT"))	break;//结束测试数据memset(indegree,0,sizeof(indegree));//数组的初始化memset(map,0,sizeof(map));int screen[16][16];for(int j=0; j<4; j++)for(int k=0; k<4; k++)scanf("%d",&screen[j][k]);scanf("%s",C);for(int j=1; j<=9; j++) {for(int k=0; k<4; k++) {int gx=local[j][0]+dx[k];int gy=local[j][1]+dy[k];int now=screen[gx][gy];//当前屏幕显示的数字if(now!=j&&!map[j][now]) {map[j][now]=1;indegree[now]++;}}
//				printf("**********\n");}if(TopoSort())      puts("THESE WINDOWS ARE CLEAN");else                puts("THESE WINDOWS ARE BROKEN");}return 0;
}


这篇关于POJ 2585 Window Pains(窗口的颜色显示问题,拓扑排序,经典题目)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489805

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关