python编程练习:Engquist-Osher差分格式求解Burgers方程

本文主要是介绍python编程练习:Engquist-Osher差分格式求解Burgers方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目
1-1
二、代码

from scipy.integrate import quad
import numpy as np# 函数f(u)=1/2*u**2,故f`(u)=u
def f_positive(upp_value):# 积分f+(u)中需要使用的函数is_over_zero = int(upp_value > 0)return is_over_zero * upp_valuedef f_negative(upp_value):# 积分f-(u)中需要使用的函数is_over_zero = int(upp_value > 0)return (1 - is_over_zero) * upp_valuedef cal_fu(upp_value, form='+'):""":param upp_value:积分上限:param form: 可选值列表[‘+’,‘-’],决定返回f+(u)还是f-(u):return: quad_r: f+(u)、f-(u)的值"""quad_r = 0if form == "+":quad_r = quad(f_positive, 0, upp_value)[0]elif form == '-':quad_r = quad(f_negative, 0, upp_value)[0]return quad_rdef cal_next_step(pt, px):"""该空间点在下一时间层的值:param pt: 当前点在网格的空间位置:param px: 当前点在网格的时间位置:param grid: 网格点上的值:return:"""u_j_n = grid_value[pt][px]  # 计算U(j,n)u_jplus1_n = grid_value[pt][px+1]  # 计算U(j+1,n)u_jminus1_n = grid_value[pt][px-1]  # 计算U(j-1,n)temp_minus = cal_fu(u_jplus1_n, form='-') - cal_fu(u_j_n, form='-')temp_plus = cal_fu(u_j_n) + cal_fu(u_jminus1_n)u_j_nplus1 = u_j_n - grid_ratio * (temp_minus + temp_plus)grid_value[pt+1][px] = u_j_nplus1if __name__ == "__main__":x_range = [-2, 2]  # 空间范围t_range = [0, 0.9]  # 时间范围delta_x = 0.1  # 空间步长delta_t = 0.01  # 时间步长grid_ratio = delta_t / delta_x  # 网格比grid_x = int((x_range[1] - x_range[0]) / delta_x) + 1  # 空间网格点数,此例中为41grid_t = int((t_range[1] - t_range[0]) / delta_t) + 1  # 时间网格点数,此例中为91# 考虑用列表grid_value来存储Ujn[[t=0.01],...,[t=0.9]]grid_value = np.zeros((grid_t, grid_x))  # 行代表某个时间、列代表某个空间# 将初始值t=0添加到grid_value中,即初始条件for i in range(grid_x):x_current = x_range[0] + delta_x * iif x_current > 0:grid_value[0][i] = 1else:grid_value[0][i] = -1# 将每一个时间层上的左右边界赋固定值grid_value[:, grid_x-1] = 1  # 右边界为1grid_value[:, 0] = -1  # 左边界为-1# 开始计算,时间上索引从0算到89,空间上索引从1算到39# 假设右边界必定收敛for i in range(0, grid_t-1):for j in range(1, grid_x-1):cal_next_step(i, j)grid_value[i, -1] = grid_value[i, -2]grid_value[-1, -1] = grid_value[-1, -2]# 仅将最后一个时间层的网格点数据保存到"2.txt"中np.savetxt('2.txt', grid_value[-1, :], fmt='%0.8f')

三、运行结果
3-1
绘图如下:
3-2

这篇关于python编程练习:Engquist-Osher差分格式求解Burgers方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489085

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Python中Tkinter GUI编程详细教程

《Python中TkinterGUI编程详细教程》Tkinter作为Python编程语言中构建GUI的一个重要组件,其教程对于任何希望将Python应用到实际编程中的开发者来说都是宝贵的资源,这篇文... 目录前言1. Tkinter 简介2. 第一个 Tkinter 程序3. 窗口和基础组件3.1 创建窗

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

浅析python如何去掉字符串中最后一个字符

《浅析python如何去掉字符串中最后一个字符》在Python中,字符串是不可变对象,因此无法直接修改原字符串,但可以通过生成新字符串的方式去掉最后一个字符,本文整理了三种高效方法,希望对大家有所帮助... 目录方法1:切片操作(最推荐)方法2:长度计算索引方法3:拼接剩余字符(不推荐,仅作演示)关键注意事

python版本切换工具pyenv的安装及用法

《python版本切换工具pyenv的安装及用法》Pyenv是管理Python版本的最佳工具之一,特别适合开发者和需要切换多个Python版本的用户,:本文主要介绍python版本切换工具pyen... 目录Pyenv 是什么?安装 Pyenv(MACOS)使用 Homebrew:配置 shell(zsh

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

Python容器转换与共有函数举例详解

《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示