使用rknn-toolkit2将paddleseg模型导出rknn模型

2023-12-12 16:20

本文主要是介绍使用rknn-toolkit2将paddleseg模型导出rknn模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

安装paddle2onnx环境

将paddle模型导出onnx模型

安装rknn-toolkits

转化rknn模型


安装paddle2onnx环境

  • 首先创建一个python虚拟环境
conda create -n paddle2onnx python==3.10
source activate paddle2onnx
  • 下载并安装 https://github.com/PaddlePaddle/Paddle2ONNX
cd Paddle2ONNX
pip install .

将paddle模型导出onnx模型

  • 下载一个官方提供的模型,并解压
cd paddle2onnx/tools/paddle
wget https://bj.bcebos.com/paddlehub/fastdeploy/Portrait_PP_HumanSegV2_Lite_256x144_infer.tgz
tar -xvf Portrait_PP_HumanSegV2_Lite_256x144_infer.tgz
  • 执行infer_shape
python paddle_infer_shape.py --model_dir portrait_pp_humansegv2_lite_256x144_inference_model \--model_filename model.pdmodel \--params_filename model.pdiparams \--save_dir portrait_pp_humansegv2_lite_256x144_inference_model \--input_shape_dict="{'x':[1,3,144,255]}"
  • 导出onnx模型
paddle2onnx --model_dir portrait_pp_humansegv2_lite_256x144_inference_model \--model_filename model.pdmodel \--params_filename model.pdiparams \--save_file portrait_pp_humansegv2_lite_256x144_inference_model/portrait_pp_humansegv2_lite_256x144_inference_model.onnx \--enable_dev_version True

安装rknn-toolkits

  • 下载 https://github.com/rockchip-linux/rknn-toolkit2
cd rknn-toolkit2/packages
pip install rknn_toolkit2-1.5.2+b642f30c-cp310-cp310-linux_x86_64.whl

转化rknn模型

  • 我们直接使用FastDeploy中的python脚本,地址在tools/rknpu2/export.py
  • 编写一个yaml配置文件myseg.yaml,文件中的onnx模型是刚才转换得到的,修改成自己的目录,dataset.txt 在FastDeploy中有,拷贝到模型目录中,指定输出目录,配置完成后执行
mean:-- 127.5- 127.5- 127.5
std:-- 127.5- 127.5- 127.5
model_path: ./Portrait_PP_HumanSegV2_Lite_256x144_infer/Portrait_PP_HumanSegV2_Lite_256x144_infer.onnx
outputs_nodes:
do_quantization: True
dataset: "./Portrait_PP_HumanSegV2_Lite_256x144_infer/dataset.txt"
output_folder: "./Portrait_PP_HumanSegV2_Lite_256x144_infer"
  • 执行转换脚本
python tools/rknpu2/export.py \--config_path myseg.yaml \--target_platform rk3588

这篇关于使用rknn-toolkit2将paddleseg模型导出rknn模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/485222

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应