【OpenCV-Python】教程:4-3 Shi-Tomasi 角点检测

2023-12-12 04:50

本文主要是介绍【OpenCV-Python】教程:4-3 Shi-Tomasi 角点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV Python Shi-Tomasi 角点检测器

【目标】

  • Shi-Tomasi 角点检测器
  • cv2.goodFeaturesToTrack

【理论】

上一个章节中学习了Harris角点,J. Shi and C. Tomasi 做了一些修改,Good Features to Track显示了比Harris角点更好的效果。

Harris 角点检测器分数函数如下:

R = λ 1 λ 2 − k ( λ 1 + λ 2 ) 2 R=\lambda_1 \lambda_2 -k(\lambda_1+\lambda_2)^2 R=λ1λ2k(λ1+λ2)2

Shi-Tomasi 用:

R = m i n ( λ 1 , λ 2 ) R=min(\lambda_1,\lambda_2) R=min(λ1,λ2)

如果 R R R大于一个阈值,就认为是角点。

在这里插入图片描述

如上图,绿色部分的取值就被认为是角点。

【代码】

Harris角点和Shi-Tomasi角点效果对比

在这里插入图片描述

在这里插入图片描述

import numpy as np 
import cv2from matplotlib import pyplot as pltimg = cv2.imread("assets/blox.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# #############################################
# harris 角点检测
gray_harris = np.float32(gray)
# dst 为角点相应,并没有直接返回角点位置
dst = cv2.cornerHarris(gray_harris, 2, 3, 0.04)
# 角点响应,消除一些噪声,所以要做膨胀和腐蚀
dst = cv2.dilate(dst, None)
dst = cv2.erode(dst, None)
ret, dst = cv2.threshold(dst, 0.01 * dst.max(), 255, cv2.THRESH_BINARY)
dst = np.uint8(dst)# 取连通区域
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)
# print(len(centroids))
# print(centroids)
img_harris = img.copy()
for xy in centroids:x, y = int(xy[0]), int(xy[1])cv2.circle(img_harris, (x, y), 3, (0, 255, 255), -1)
cv2.imshow("img_harris", img_harris)###########################################
# shi-Tomasi 角点检测
# corners = cv2.goodFeaturesToTrack(gray, 25, 0.01, 10)
# 这里为了统一对比,也选择56个角点
corners = cv2.goodFeaturesToTrack(gray, 56, 0.01, 10)
corners = np.int0(corners)
img_goodfeatures = img.copy()
for i in corners:x, y = i.ravel()cv2.circle(img_goodfeatures, (x, y), 3, (0, 0, 255), -1)cv2.imshow("img_goodfeatures", img_goodfeatures)cv2.waitKey(0)
cv2.destroyAllWindows()

【接口】

  • goodFeaturesToTrack
cv.goodFeaturesToTrack(	image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]	) ->	corners
cv.goodFeaturesToTrack(	image, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize[, corners[, useHarrisDetector[, k]]]	) ->	corners
cv.goodFeaturesToTrackWithQuality(	image, maxCorners, qualityLevel, minDistance, mask[, corners[, cornersQuality[, blockSize[, gradientSize[, useHarrisDetector[, k]]]]]]	) ->	corners, cornersQuality

寻找图像中强的角点

  • image: 输入的单通道8位或浮点图像
  • corners: 输出的角点列表
  • maxCorners: 返回的最多的角点数量,如果检测数量较多,返回最强的那个数量即可。如果要返回所有的,设置为0即可,测试发现设置负数运行报错
  • qualityLevel: 最小可接受角点等级。该参数会与最好的角点响应值相乘,比如说最好的响应为1500,如果设置为0.01,则小于15的角点都不会接受。
  • minDistance: 返回的角点之间的最小欧式距离。
  • mask: 感兴趣区域
  • cornersQuality: 输出角点的质量
  • blockSize: 计算梯度和特征值的小窗口
  • gradientSize: sobel 梯度窗口直径
  • useHarrisDetector: 是否使用 harris 的检测算子
  • k: Harris角点检测器的参数

【参考】

  1. OpenCV 官方文档
  2. Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on , pages 593–600. IEEE, 1994.

这篇关于【OpenCV-Python】教程:4-3 Shi-Tomasi 角点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483297

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方