opencv 特征点检测与匹配-Harris角点检测+shi-Tomasi角点检测

2023-12-12 04:50

本文主要是介绍opencv 特征点检测与匹配-Harris角点检测+shi-Tomasi角点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

opencv 特征检测的应用场景

  • 图像搜索,如以图搜图

  • 拼图游戏

  • 图像拼接,将两个有关联的图拼接到一起

拼图方法

  • 寻找特征
  • 特征是唯一的
  • 可追踪的
  • 能比较的

在这里插入图片描述

  • 平坦部分很难找到它在原图的位置
  • 边缘相比平坦要好找一些,但也不能一下确定
  • 角点可以一下就能找到其在原图的位置

什么是特征

图像特征就是指有意义的图像区域,具有独特性,易于识别性,比如角点、斑点以及高密度区

角点

  • 在特征中最重要的是角点
  • 灰度梯度的最大值对应的像素
  • 两条线的交点
  • 极值点(一阶导数最大,但二阶导数为0)

Harris角点检测

在这里插入图片描述
Harris点

  • 光滑地区,无论向哪个移动,衡量系数不变
  • 边缘地区,垂直边缘移动时,衡量系统剧烈变化
  • 在交点处,往那个方向移动,衡量系统都发生剧烈变化

API

  • cornerHarrris(img,dst,blockSize,ksize,k)
  • blockSize: 检测窗口大小
  • ksize: Sobel的卷积核
  • k 权重系数,经验值,一般取0.02-0.04之间
import cv2 as cv
import numpy as np# 读取文件
img = cv.imread(r'C:\Users\Administrator\Desktop\hello.jpg')
# 灰度化
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)# Harris角点检测
dst = cv.cornerHarris(gray,blockSize=2, ksize=3, k=0.04)img[dst > 0.01*dst.max()] = [0, 0, 255]cv.imshow('harris', img)
cv.waitKey(0)

在这里插入图片描述

shi-Tomasi角点检测

  • shi- tomasi是Harris角点检测的改进
  • Harris角点检测算的稳定性和k有关,而k是个经验值,不好设定最佳值

goodFeaturesToTrack(img,maxCorners,…)

  • maxCorners:角点的最大数,值为0表示无限制
  • qualityLevel:小于1.0的正数,一般在0.01-0.1之间
  • minDistance:角之间最小欧式距离,忽略小于此距离的点
  • mask: 感兴趣的区域
  • blockSize:检测窗口
  • useHarrisDectector:是否使用Harris算法
  • k :默认是0.04
import cv2 as cv
import numpy as np# 读取文件
img = cv.imread(r'C:\Users\Administrator\Desktop\hello.jpg')
# 灰度化
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)# Harris角点检测
# dst = cv.cornerHarris(gray,blockSize=2, ksize=3, k=0.04)# shi-Tomasi角点检测
corners = cv.goodFeaturesToTrack(gray, maxCorners=1000, qualityLevel=0.01, minDistance=10)
# img[dst > 0.01*dst.max()] = [0, 0, 255]
corners= np.int0(corners)
print(corners)
for i in corners:x, y = i.ravel()cv.circle(img, (x, y), 3, (0, 255, 0),-1)cv.imshow('harris', img)
cv.waitKey(0)

在这里插入图片描述

在这里插入图片描述

这篇关于opencv 特征点检测与匹配-Harris角点检测+shi-Tomasi角点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483291

相关文章

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量