本文主要是介绍32、卷积参数 - 长宽方向的公式推导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
有了前面三节的卷积基础 padding, stride, dilation 之后,大概就可以了解一个卷积算法的全貌了。
一个完整的卷积包含的输入和输出有:
-
输入图像,表示为[n, hi, wi, ci]
-
卷积核,表示为[co, kh, kw, ci]
-
输出特征图,表示为[n, ho, wo, co]
以上为卷积算法的两个输入 tensor 和一个输出 tensor,相关表述可以去卷积的基础公式复习。
那除了这三个 tensor 之外,还有计算卷积所需要的三个参数,分别为 padding, stride, dilation, 见前面三节的内容。
两个输入 tensor(输入图片和卷积核)和 一个输出tensor(输出特征图)以及三个参数(padding,stride,dilation)构成了一个完
这篇关于32、卷积参数 - 长宽方向的公式推导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!