大数据开发:SparkCore开发调优原则

2023-12-11 12:08

本文主要是介绍大数据开发:SparkCore开发调优原则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在大数据计算引擎当中,Spark受到的重视是越来越多的,尤其是对数据处理实时性的要求越来越高,Hadoop原生的MapReduce引擎受到诟病,Spark的性能也需要不断调整优化。今天的大数据开发学习分享,我们就来讲讲SparkCore开发调优原则。
 

大数据培训:SparkCore开发调优原则

 


Spark在大数据领域,能够实现离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计算操作,对于企业而言是低成本下的可靠性选择,但是想要真正用好Spark,实现真正的高性能,调优是不可或缺的手段。

SparkCore开发调优原则

1、避免创建重复的RDD

通常来说,我们在开发一个Spark作业时,首先是基于某个数据源(比如Hive表或HDFS文件)创建一个初始的RDD;接着对这个RDD执行某个算子操作,然后得到下一个RDD;以此类推,循环往复,直到计算出最终我们需要的结果。

我们在开发过程中要注意:对于同一份数据,只应该创建一个RDD,不能创建多个RDD来代表同一份数据。否则,我们的Spark作业会进行多次重复计算来创建多个代表相同数据的RDD,进而增加作业的性能开销。

2、尽可能复用同一个RDD

除了要避免在开发过程中对一份完全相同的数据创建多个RDD之外,在对不同的数据执行算子操作时还要尽可能地复用一个RDD。

尤其对于类似这种多个RDD的数据有重叠或者包含的情况,尽量复用一个RDD,这样可以尽可能地减少RDD的数量,从而尽可能减少算子执行的次数。

3、对多次使用的RDD进行持久化

Spark中对于一个RDD执行多次算子的默认原理是这样的:每次你对一个RDD执行一个算子操作时,都会重新从源头处计算一遍,计算出那个RDD来,然后再对这个RDD执行你的算子操作。这种方式的性能是很差的。

而对多次使用的RDD进行持久化,Spark就会根据你的持久化策略,将RDD中的数据保存到内存或者磁盘中。以后每次对这个RDD进行算子操作时,都会直接从内存或磁盘中提取持久化的RDD数据,然后执行算子,而不会从源头处重新计算一遍这个RDD,再执行算子操作。
 

大数据培训:SparkCore开发调优原则


4、尽量避免使用shuffle类算子

如果有可能的话,要尽量避免使用shuffle类算子。因为Spark作业运行过程中,最消耗性能的地方就是shuffle过程。shuffle过程,简单来说,就是将分布在集群中多个节点上的同一个key,拉取到同一个节点上,进行聚合或join等操作。

比如reduceByKey、join等算子,都会触发shuffle操作。没有shuffle操作或者仅有较少shuffle操作的Spark作业,可以大大减少性能开销。

5、使用map-side预聚合的shuffle操作

如果因为业务需要,一定要使用shuffle操作,无法用map类的算子来替代,那么尽量使用可以map-side预聚合的算子。

所谓的map-side预聚合,说的是在每个节点本地对相同的key进行一次聚合操作,类似于MapReduce中的本地combiner。map-side预聚合之后,每个节点本地就只会有一条相同的key,因为多条相同的key都被聚合起来了。其他节点在拉取所有节点上的相同key时,就会大大减少需要拉取的数据数量,从而也就减少了磁盘IO以及网络传输开销。

6、使用高性能的算子

除了shuffle相关的算子有优化原则之外,其他的算子也都有着相应的优化原则。

比如说使用reduceByKey/aggregateByKey替代groupByKey;使用mapPartitions替代普通map;使用foreachPartitions替代foreach;使用filter之后进行coalesce操作;使用repartitionAndSortWithinPartitions替代repartition与sort类操作等。
 

大数据培训:SparkCore开发调优原则

 


7、广播大变量

在开发过程中,有时会遇到需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时就应该使用Spark的广播(Broadcast)功能来提升性能。

在算子函数中使用到外部变量时,默认情况下,Spark会将该变量复制多个副本,通过网络传输到task中,此时每个task都有一个变量副本。如果变量本身比较大的话(比如100M,甚至1G),那么大量的变量副本在网络中传输的性能开销,以及在各个节点的Executor中占用过多内存导致的频繁GC,都会极大地影响性能。

8、使用Kryo优化序列化性能

在Spark中,主要有三个地方涉及到了序列化:

在算子函数中使用到外部变量时,该变量会被序列化后进行网络传输。

将自定义的类型作为RDD的泛型类型时(比如JavaRDD,Student是自定义类型),所有自定义类型对象,都会进行序列化。因此这种情况下,也要求自定义的类必须实现Serializable接口。

使用可序列化的持久化策略时(比如MEMORY_ONLY_SER),Spark会将RDD中的每个partition都序列化成一个大的字节数组。

对于这三种出现序列化的地方,我们都可以通过使用Kryo序列化类库,来优化序列化和反序列化的性能。

关于大数据开发学习,SparkCore开发调优原则,以上就为大家做了简单的介绍了。SparkCore作为Spark的核心部分,要真正掌握Spark框架,那么核心部分一定要吃透。

这篇关于大数据开发:SparkCore开发调优原则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/480627

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

基于Python开发PPTX压缩工具

《基于Python开发PPTX压缩工具》在日常办公中,PPT文件往往因为图片过大而导致文件体积过大,不便于传输和存储,所以本文将使用Python开发一个PPTX压缩工具,需要的可以了解下... 目录引言全部代码环境准备代码结构代码实现运行结果引言在日常办公中,PPT文件往往因为图片过大而导致文件体积过大,

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下