基于深度学习的yolov7植物病虫害识别及防治系统

2023-12-11 05:52

本文主要是介绍基于深度学习的yolov7植物病虫害识别及防治系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

    • 一项目简介
    • 简介
      • YOLOv7
    • 系统特性
    • 工作流程
  • 二、功能
  • 三、系统
  • 四. 总结

一项目简介

  # YOLOv7植物病虫害识别及防治系统介绍

简介

该系统基于深度学习技术,采用YOLOv7(You Only Look Once,只看一次)目标检测模型,旨在实现对植物病虫害的快速准确识别及相应的防治措施。

YOLOv7

YOLOv7是一种高效的实时目标检测算法,通过将图像划分为网格并预测每个网格中的目标,实现对多个对象的同时检测。其较之前版本在性能和准确性上有显著提升。

系统特性

  1. 高效识别: YOLOv7模型以高速、高准确性的特点著称,能够在实时场景中迅速识别植物病虫害。

  2. 多类别支持: 系统支持多种植物病虫害的分类,为不同类型问题提供灵活的解决方案。

  3. 实时监测: 基于实时检测技术,系统能够及时发现植物病虫害的存在,有助于采取即时的防治措施。

  4. 用户友好界面: 系统设计了直观、易用的用户界面,使用户能够轻松操作和获取相关信息。

工作流程

  1. 数据收集: 收集包含植物病虫害样本的图像数据集,并进行标注。

  2. 模型训练: 使用YOLOv7算法对标注数据进行训练,优化模型以提高植物病虫害的检测准确性。

  3. 实时检测: 部署训练好的模型到系统中,实现实时植物病虫害的检测和识别。

  4. 反馈与防治: 根据检测结果,系统提供相应的防治建议,并记录数据以改进模型性能。

二、功能

  环境:Python3.7.4、torch、OpenCV、Pycharm2020
简介:由于当今全球气候变化异常,农作物病虫害频发,而且农作物病种类多,成因复杂,其预防和识别难度较大,且传统病虫害识别方法大多靠人目视手查,需要一定的专家经验,具有主观性强、识别准确率低等缺点.而信息技术作为解决农作物病虫害智能、快速识别的新技术、新方法,我们计划利用农业信息大数据智能决策分析系统,建立完善一体化的智能农业信息监测系统等.本文便是基于深度学习将计算机视觉、图像识别等技术运用于农作物病虫害检测中,开发智能病虫害检测系统,以提高病虫害检测准确率,减少病虫害对农业生产的危害.

三、系统

请添加图片描述
请添加图片描述
请添加图片描述

四. 总结

  ## 应用领域

  • 农业领域:帮助农民及时发现植物病虫害,采取有效防治措施,提高农产品产量和质量。

  • 研究领域:为植物保护研究提供实时、准确的数据,支持学术研究和决策制定。

该系统的引入将为植物保护提供强有力的工具,实现对植物病虫害的精准监测和科学防治。

这篇关于基于深度学习的yolov7植物病虫害识别及防治系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/479646

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推