用户案例|Milvus 助力 Credal.AI 实现 GenAI 安全与可控

2023-12-11 03:30

本文主要是介绍用户案例|Milvus 助力 Credal.AI 实现 GenAI 安全与可控,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AIGC 时代,企业流程中是否整合人工智能(AI)对于的企业竞争力至关重要。然而,随着 AI 不断发展演进,企业也在此过程中面临数据安全管理、访问权限、数据隐私等方面的挑战。

为了更好地解决上述问题,Credal.AI(以下简称 “Credal”) 提供的解决方案使组织能够在释放生成式人工智能(GenAI)潜力的同时降低其风险。Credal 解决方案的核心向量数据库 Milvus,在 Milvus 的加持下,Credal 能够更好地实现其企业愿景——【打造安全且实用的 AI】 。

01.Credal:GenAI 与企业数据安全间的桥梁

Credal 的目标是使企业能安全且方便地使用 GenAI。为此,Credal 提供了强大的数据集成和治理功能,能从 Microsoft Office、Google Workspace 以及 Slack 等多种平台中拉取数据。他们推出了类似于“Okta 的 AI 版本”,从而严格管理访问和权限,以便为开发者和终端用户提供一个流畅且安全的接口。因此,Credal 成为一个端到端的解决方案,支持安全、企业级的 GenAI 部署。

alt

从用户的角度来看,他们无需精通编码或复杂的算法便可利用大量数据,发挥 GenAI 的力量。用户能够使用 Credal 创建代理,确保能够最大化利用 GenAI 技术。

对于管理员和 IT 团队,Credal 提供了监控数据和管理工具,包括强制根据使用条款实施、审计跟踪、日志记录、数据目录和数据治理等功能。这些功能都是在大型企业中高效部署 GenAI 的关键部分。用户可以通过 Credal 的聊天界面或 API 使用诸多重要功能,如 PII 删除、审计日志、数据访问控制等。

02.Credal 痛点:缺乏生产就绪的向量数据库

在 Credal AI 产品开发的初期阶段,公司遭遇了多个挑战。其中一个核心功能是语义搜索,但发现使用基本的向量搜索插件在大规模实现这个功能颇为困难。当语义搜索被嵌入到需要高数据库性能的定制工作流中时,这些挑战变得更为严重。为了构造这些由 GenAI 驱动的工作流,需要对传统的搜索机制进行改进,因为这些工作流需要根据复杂、用户定义的标准实时处理大量数据集。

另外,由于拥有多种托管环境,包括云基础设施和现场部署,Credal 需要有一个可以自我托管,且得到活跃开源社区支持的向量数据库,一个快速、可扩展且多功能的数据库,以应对复杂的数据管道和多种托管条件的需求。而在进行技术选型的过程中,Credal 发现市面上有许多向量数据库解决方案,但都无法满足其企业级的需求。

03.选择 Milvus:以开发者为核心的全能向量数据库

经过对众多市面上主流的向量数据库的评估,评估指标包括:是否支持自托管、可扩展性、是否拥有庞大的社区。

Milvus 在评估中脱颖而出。Milvus 在 GitHub 上获星超过 24 K,拥有高度活跃的社区,且处于不断迭代的过程中,高频推出新功能。

首先,Milvus 不断升级的特性是 Credal 考虑的重点,特别是其混合搜索功能,能够在执行向量搜索的同时过滤其他元数据。尽管许多解决方案提供了快速的向量搜索,但在处理结构化数据方面却显得力不从心。Milvus 的混合搜索能力完美解决了这一技术缺口,解决了实际的商业问题。

其次,Milvus 为 Kubernetes 提供的官方 Helm Chart 同样是 Credal 考虑的重点。尽管自定义 Helm Chart 不是难事,但官方支持的 Chart 却体现了 Milvus 对开发者成功的承诺。Credal 认为这体现了 Milvus 团队不追求短期利益,而是致力于解决用户面临的实际挑战。尤其是对于 Credal AI 这样的初创企业来说,这种支持极为宝贵,Milvus 可以帮助他们简化部署流程,节省时间和工程资源。

再者,Milvus 从架构设计上,将计算和存储分离,因此具备高度的灵活性和可扩展性。与单节点的数据库架构不同,Milvus 的架构支持灵活扩展,从而应对不断变化的需求。

Credal 联合创始人兼首席技术官 Jack Fischer 强调了这种架构设计的优越性:“刚开始搭建平台时,我们并不能确切知道后续的访问模式会是什么样的。随着我们的产品发展,访问模式肯定会随之变化......所以,我们很庆幸采用了 Milvus 这种存储和计算分离的向量数据库。无论我们如何发展产品,Milvus 能够满足我们的业务需求,我们对此充满信心。”

04.结果:Milvus 助力 Credal 搭建高效、可扩展的平台

对于 Credal AI 来说,采用 Milvus 无疑改变了整个游戏局面,为他们复杂的向量搜索需求提供了坚实的基础。Milvus 的技术能力迅速消除了他们对数据库性能的初步疑虑。在创业公司常面对不断变化需求的场景中,Milvus 既是即时的解决方案,也展现出长期的价值。

选择 Milvus 的决定得到了验证,它完美融入了 Credal AI 的现有系统,不仅满足了技术的前提条件,还实现了更广泛的商业目标。由于其分离的存储和计算架构,使得平台具有很高的可扩展性,这让 Credal AI 有信心预见并适应不断出现的客户需求。这也让 Credal 能够集中精力做它最擅长的事:不断优化其核心产品并促进用户参与度。他们完全放心,无论面对什么样的需求,其后端都能够应对自如。

Fisher 表示:“在我们需求的文氏图中,处在最中间的就是 Milvus,它集所有需求的交集于一身。这点是其他向量数据库都比不上的。如果只需要其中一两点功能,那可以考虑别的向量数据库。但如果需要所有功能,必然选择 Milvus。”

05.未来合作:与 Zilliz 共绘蓝图

借助 Milvus,Credal 能够为客户提供可扩展、易于使用的解决方案,而无需从头开始自行研发向量搜索解决方法。此外,使用 Milvus 并不会带来额外的运营开销。Milvus 的可扩展性和稳定性确保了 Credal 平台能够随着业务发展灵活扩展。

目前,Credal 正考虑未来与打造 Milvus 的原厂 Zilliz 合作,利用 Zilliz Cloud 为其云上客户提供服务。Credal 的公司使命和愿景是持续努力将 GenAI 功能整合到实际企业应用中,这就需要强大的安全保障和全面的数据治理。Zilliz Cloud——全托管、开箱即用的 Milvus 服务,非常契合 Credal 的商业战略,能够助其简化运营流程,优化云上客户的体验。关于未来的合作,我们拭目以待!

本文由 mdnice 多平台发布

这篇关于用户案例|Milvus 助力 Credal.AI 实现 GenAI 安全与可控的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/479310

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象