生成模型 | 数字人类的三维重建(3D reconstruction)调研及总结【20231210更新版】

本文主要是介绍生成模型 | 数字人类的三维重建(3D reconstruction)调研及总结【20231210更新版】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要集中于图片到三维重建的算法模型,其中包含人体重建,人脸重建等

1.三维人体重建

1.1.2015_SMPL: A Skinned Multi-Person Linear Model

论文地址:SMPL2015.pdf (mpg.de)

代码地址:CalciferZh/SMPL: NumPy, TensorFlow and PyTorch implementation of human body SMPL model and infant body SMIL model. (github.com)

gulvarol/smplpytorch: SMPL body model layer for PyTorch (github.com)

autocyz/smpl_understand: understand about SMPLmodel(http://smpl.is.tue.mpg.de/downloads) (github.com)

2019_SMPL-X: Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

论文地址:SMPL-X (mpg.de)

论文代码:vchoutas/smplx: SMPL-X (github.com)

论文摘要

 为了便于分析人类行为、互动和情绪,论文从单个单眼图像中计算出人体姿势、手部姿势和面部表情的 3D 模型。为了实现这一目标,论文使用数千次 3D 扫描来训练一种新的、统一的人体 3D 模型 SMPL-X,该模型通过完全关节的手和富有表现力的面部扩展 SMPL。在没有配对图像和 3D 地面实况的情况下,学习直接从图像回归 SMPL-X 的参数具有挑战性。因此,论文遵循 SMPLify 的方法,该方法估计 2D 特征,然后优化模型参数以拟合特征。在几个重要方面改进了 SMPLify:

  • 检测与面部、手和脚相对应的 2D 特征,并将完整的 SMPL-X 模型拟合到这些特征上;
  • 先使用大型MoCap数据集训练一种新的神经网络姿势;
  • 定义了一种既快速又准确的新的相互渗透惩罚;
  • 自动检测性别和适当的身体模型(男性、女性或中性);
  • 在 PyTorch 实现比 Chumpy 加速了 8 倍以上。

使用新方法SMPLify-X将SMPL-X拟合到受控图像和野外图像中。在一个新的精选数据集上评估 3D 准确性,该数据集包含 100 张具有伪地面实况的图像。这是从单目RGB数据中自动进行富有表现力的人体捕获的一步。这些模型、代码和数据可在 https://smpl-x.is.tue.mpg.de 上用于研究目的。

2020_Deep reconstruction of 3D human poses from video

论文地址:JIAN_TAI.pdf (uwa.edu.au)

代码地址:暂无

[ CVPR 2020].PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization

论文地址:arxiv.org/pdf/2004.00452.pdf

代码地址:facebookresearch/pifuhd: High-Resolution 3D Human Digitization from A Single Image. (github.com)

Demo:PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (shunsukesaito.github.io)

 

2022_JIFF: Jointly-aligned Implicit Face Function for High Quality Single View Clothed Human Reconstruction

论文地址:2204.10549.pdf (arxiv.org)

论文代码:暂未开源

2023.11.27_HAVE-FUN: Human Avatar Reconstruction from Few-Shot Unconstrained Images

论文地址:2311.15672.pdf (arxiv.org)

代码地址:暂未开源

Demo:HAVE-FUN (seanchenxy.github.io)

[ CVPR 2023].Complete 3D Human Reconstruction from a Single Incomplete Image

论文地址:Complete 3D Human Reconstruction From a Single Incomplete Image (thecvf.com)

代码地址:

2.三维人脸重建

2.1.3DMM:A Morphable Model For The Synthesis Of 3D Faces

论文地址:SIG99.dvi (ucsd.edu)

代码地址:ascust/3DMM-Fitting-Pytorch: A 3DMM fitting framework using Pytorch. (github.com)(非官方版)

 2.2.2022_Rodin: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion

论文地址:2212.06135.pdf (arxiv.org)

论文代码:cbritopacheco/rodin: Modern C++17 finite element method and shape optimization framework. (github.com)

论文Demo:RODIN Diffusion (microsoft.com)Rodin Diffusion: A Generative Model for Sculpting 3D Digital Avatars - Microsoft Research

 该 3D 化身扩散模型经过训练,可生成表示为神经辐射场的 3D 数字头像。以最先进的生成技术(扩散模型)为基础进行3D建模。使用三平面表示来分解化身的神经辐射场,可以通过扩散模型显式建模,并通过体积渲染渲染到图像中。所提出的3D感知卷积带来了急需的计算效率,同时保持了3D扩散建模的完整性。整个生成是一个分层过程,具有用于多尺度建模的级联扩散模型。一旦生成模型被训练,就可以根据从输入图像、文本提示或随机噪声派生的潜在代码来控制头像的生成。

2.3.2023.11.26_GAIA: ZERO-SHOT TALKING AVATAR GENERATION

论文题目:2023.11.26GAIA: ZERO-SHOT TALKING AVATAR GENERATION

论文地址:2311.15230.pdf (arxiv.org)

论文代码:20231205暂未发布

论文摘要

 零样本说话头像生成旨在从语音和单个肖像图像中合成自然的说话视频。以前的方法依赖于特定领域的启发式方法,例如基于变形的运动表示和 3D 可变形模型,这限制了生成的化身的自然性和多样性。在这项工作中,引入了 GAIA(Generative AI for Avatar),它消除了说话头像生成中的领域先验。鉴于语音仅驱动化身的运动,而化身的外观和背景在整个视频中通常保持不变,将方法分为两个阶段:1)将每一帧解开为运动和外观表示;2)生成以语音和参考人像图像为条件的运动序列。我们收集了一个大规模的高质量会说话的头像数据集,并在其上用不同的尺度(最多 2B 参数)训练模型。实验结果验证了GAIA的优越性、可扩展性和灵活性,1)所得模型在自然性、多样性、口型同步质量和视觉质量方面优于以前的基线模型;2)该框架是可扩展的,因为更大的模型会产生更好的结果;3)它是通用的,可以支持不同的应用,如可控的说话头像生成和文本指示的头像生成。

参考文献

【1】3D human reconstruction人体重建论文小合集 - 知乎 (zhihu.com)

【2】【精选】2022 CVPR 三维人体重建相关论文汇总(3D Human Reconstruction)_3d人体重建_BTWBB的博客-CSDN博客 【3】【技术综述】基于3DMM的三维人脸重建技术总结 - 知乎 (zhihu.com)

【4】 imbinwang/awesome-nerf-3d-reconstruction (github.com)

【5】PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (shunsukesaito.github.io) 

这篇关于生成模型 | 数字人类的三维重建(3D reconstruction)调研及总结【20231210更新版】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/477387

相关文章

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

C# List.Sort四种重载总结

《C#List.Sort四种重载总结》本文详细分析了C#中List.Sort()方法的四种重载形式及其实现原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录1. Sort方法的四种重载2. 具体使用- List.Sort();- IComparable

SpringBoot项目整合Netty启动失败的常见错误总结

《SpringBoot项目整合Netty启动失败的常见错误总结》本文总结了SpringBoot集成Netty时常见的8类问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、端口冲突问题1. Tomcat与Netty端口冲突二、主线程被阻塞问题1. Netty启动阻

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

python3中正则表达式处理函数用法总结

《python3中正则表达式处理函数用法总结》Python中的正则表达式是一个强大的文本处理工具,用于匹配、查找、替换等操作,在Python中正则表达式的操作主要通过内置的re模块来实现,这篇文章主要... 目录前言re.match函数re.search方法re.match 与 re.search的区别检索

idea-java序列化serialversionUID自动生成方式

《idea-java序列化serialversionUID自动生成方式》Java的Serializable接口用于实现对象的序列化和反序列化,通过将对象转换为字节流来存储或传输,实现Serializa... 目录简介实现序列化serialVersionUID配置使用总结简介Java.io.Seripyth

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

C#自动化生成PowerPoint(PPT)演示文稿

《C#自动化生成PowerPoint(PPT)演示文稿》在当今快节奏的商业环境中,演示文稿是信息传递和沟通的关键工具,下面我们就深入探讨如何利用C#和Spire.Presentationfor.NET... 目录环境准备与Spire.Presentation安装核心操作:添加与编辑幻灯片元素添加幻灯片文本操