pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm

本文主要是介绍pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 torch.rand:构造均匀分布张量

torch.rand是用于生成均匀随机分布张量的函数,从区间[0,1)的均匀分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.rand(sizes, out=None) ➡️ Tensor

参数:

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素服从0-1均匀分布的4行3列随机张量
random_tensor = torch.rand(4, 3)
print('tensor:', random_tensor)
print('type:', random_tensor.type())
print('shape:', random_tensor.shape)

运行代码显示:

tensor: tensor([[0.4349, 0.8567, 0.7321],[0.4057, 0.0222, 0.3444],[0.9679, 0.0980, 0.8152],[0.1998, 0.7888, 0.5478]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

2 torch.randn:构造标准正态分布张量

torch.randn()是用于生成正态随机分布张量的函数,从标准正态分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.randn(sizes, out=None) ➡️ Tensor

参数:

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素均为标准正态分布的4行3列随机张量
random_tensor = torch.randn(4, 3)
print('tensor:', random_tensor)
print('type:', random_tensor.type())
print('shape:', random_tensor.shape)

运行代码显示:

tensor: tensor([[ 0.7776,  0.6305,  0.1961],[ 0.1831, -0.4187,  0.1245],[ 0.3092, -1.0463, -0.6656],[-1.0098,  1.3861, -0.2600]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

3 torch.randn_like:构造与输入形状相同正态分布张量

torch.randn_like()用于生成一个与输入张量大小相同的张量,其中填充了均值为 0 方差为 1 的正态分布的随机值,其调用方法如下所示:

torch.randn_like(input_tensor, dtype=None, layout=None, device=None, requires_grad=False) ➡️ Tensor

参数:

  • input_tensor(必需)- 其大小将用于生成输出张量的输入张量。

  • dtype(可选)- 输出张量所需的数据类型。默认为None,这意味着将使用输入张量的数据类型。

  • layout(可选)- 输出张量所需的内存布局。默认为None,这意味着将使用输入张量的内存布局。

  • device(可选)- 输出张量所需的设备。默认为None,这意味着将使用输入张量的设备。

  • requires_grad(可选)- 输出张量是否应该在反向传播期间计算其梯度。默认为False。

示例代码:

import torch# 生成一个每个元素均为标准正态分布的4行3列随机张量
tensor_x = torch.randn(4, 3)
tensor_y = torch.randn_like(tensor_x)print('tensor_x:', tensor_x)
print('type:', tensor_x.type())
print('shape:', tensor_x.shape)print('tensor_y:', tensor_y)
print('type:', tensor_y.type())
print('shape:', tensor_y.shape)

运行代码显示:

tensor_x: tensor([[ 5.5292e-01,  6.5111e-01, -6.0329e-04],[ 1.0402e+00, -7.4630e-01,  7.5701e-01],[ 8.8160e-02, -1.2581e+00, -1.8089e-01],[-4.2769e-01, -8.5043e-01, -5.8388e-01]])
type: torch.FloatTensor
shape: torch.Size([4, 3])
tensor_y: tensor([[ 0.2308,  0.3297, -0.6633],[ 1.7389,  0.6372, -1.1069],[-0.2415, -0.8585,  0.3343],[-1.2581, -0.5001,  0.0317]])
type: torch.FloatTensor
shape: torch.Size([4, 3])

4 torch.randint:构造区间分布张量

torch.randint()是用于生成任意区间分布张量的函数,从标准正态分布中随机抽取一个随机数生成一个张量,其调用方法如下所示:

torch.randint(low=0, high, sizes, out=None) ➡️ Tensor

参数:

  • low~high:随机数的区间范围

  • sizes:用于定义输出张量的形状

示例代码:

import torch# 生成一个每个元素均为[1-10]均匀分布的4行3列随机张量
tensor_int = torch.randint(1, 10, (4, 3))
print('tensor_int:', tensor_int)
print('type:', tensor_int.type())
print('shape:', tensor_int.shape)

运行代码显示:

tensor_int: tensor([[1, 7, 1],[3, 8, 7],[5, 2, 1],[5, 3, 6]])
type: torch.LongTensor
shape: torch.Size([4, 3])

5 torch.randperm:根据生成的随机序号对张量进行随机排序

torch.randint()是用于对张量序号进行随机排序的函数,根据生成的随机序列进行随机排序,其调用格式如下所示:

torch.randperm(n, out=None, dtype=torch.int64) ➡️ LongTensor

参数:

  • n:一个整数,可以理解为张量某个方向的维度

  • dtype:返回的数据类型(torch.int64

示例代码:

import torch# 生成一个0~3的随机整数排序
idx = torch.randperm(4)# 生成一个4行3列的张量
tensor_4 = torch.Tensor(4, 3)# 为了方便对比,首先输出tensor_4的结果
print("原始张量\n", tensor_4)# 下面输出随机生成的行序号
print("\n生成的随机序号\n", idx)# 下面的指令实现了在行的方向上,对tensor_4进行随机排序,并输出结果
print("\n随机排序后的张量\n", tensor_4[idx])

运行代码显示:

原始张量tensor([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]])生成的随机序号tensor([3, 0, 2, 1])随机排序后的张量tensor([[0., 0., 0.],[0., 0., 0.],[0., 0., 0.],[0., 0., 0.]])

这篇关于pytorch中五种常用随机矩阵构造方法:rand、randn、randn_like、randint、randperm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/477147

相关文章

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

MyBatis配置文件中最常用的设置

《MyBatis配置文件中最常用的设置》文章主要介绍了MyBatis配置的优化方法,包括引用外部的properties配置文件、配置外置以实现环境解耦、配置文件中最常用的6个核心设置以及三种常用的Ma... 目录MyBATis配置优化mybatis的配置中引用外部的propertis配置文件⚠️ 注意事项X

一文详解Java常用包有哪些

《一文详解Java常用包有哪些》包是Java语言提供的一种确保类名唯一性的机制,是类的一种组织和管理方式、是一组功能相似或相关的类或接口的集合,:本文主要介绍Java常用包有哪些的相关资料,需要的... 目录Java.langjava.utiljava.netjava.iojava.testjava.sql

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

前端Visual Studio Code安装配置教程之下载、汉化、常用组件及基本操作

《前端VisualStudioCode安装配置教程之下载、汉化、常用组件及基本操作》VisualStudioCode是微软推出的一个强大的代码编辑器,功能强大,操作简单便捷,还有着良好的用户界面,... 目录一、Visual Studio Code下载二、汉化三、常用组件1、Auto Rename Tag2

C# 空值处理运算符??、?. 及其它常用符号

《C#空值处理运算符??、?.及其它常用符号》本文主要介绍了C#空值处理运算符??、?.及其它常用符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、核心运算符:直接解决空值问题1.??空合并运算符2.?.空条件运算符二、辅助运算符:扩展空值处理

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal