【Python数据结构与算法】—— 搜索算法 | 期末复习不挂科系列

本文主要是介绍【Python数据结构与算法】—— 搜索算法 | 期末复习不挂科系列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🌈个人主页: Aileen_0v0
🔥系列专栏: 数据结构与算法
💫个人格言:"没有罗马,那就自己创造罗马~"


这篇博客主要探索的是计算机科学常见问题---搜索算法

“时间紧,任务重!”

话不多说,开始今天的学习之旅吧⛵~


目录

搜索

定义

关键字-in

顺序搜索 

无序表的顺序搜索过程

无序表的顺序搜索代码实现 

分析顺序搜索算法

有序列表

有序列表的顺序搜索过程​编辑

无序表的顺序搜索代码实现 


搜索

定义

搜索是指从元素集合中找到特定元素算法过程

搜索过程通常返回True 或 False 来表示元素是否在集合中。

有时也可以修改搜索过程,使它返回目标元素的位置。

为了更好的打好算法基础,我们这次先探索搜索的元素是否存在这一问题。


关键字-in

in是Python中的关键字,用于判断一个元素是否存在于一个容器中。可以用于列表、元组、字典、集合等数据类型。它可以被用于for循环语句 和 if语句中。

我们之前做Python每日一练时我曾科普过Python中 我们可以通过运算符 —— in 去检查元素是否在列表中。

print(15 in [1,2,3])
print(15 in [1,2,3,15])

运行结果: 


顺序搜索 

线性结构(数组、链表、栈、队列等)都有下标。每个数据项都有一个相对于其它数据项的位置。

Python的列表 ,数据项的位置就是其下标。

因为下标有序的,So 我们能够进行 顺序访问顺序搜索

无序表的顺序搜索过程

下图展示了顺序搜索的过程。

无序表的顺序搜索代码实现 

def sequential_search(a_list,item):pos = 0while pos < len(a_list):if a_list[pos] == item:return  Truepos += 1return  Falseprint(sequential_search([1,2,4,5,9],5))

从列表第一个元素开始, 沿着下表顺序逐个查看,直到找到目标元素或者到达列表末尾。

若查完列表后仍未找到目标元素,则说明目标元素不在列表中。

分析顺序搜索算法

分析搜索算法前,首先需要先定义 计算的基本单元---解决问题过程中不断重复的的某一步

对搜索来说,记录 比较的次数 是合理的 性能指标。

每次比较只有两个结果: 找到目标元素,或未找到。

假设元素排列无序,则目标元素在每一个位置出现的可能都相同。

确定目标元素是否在列表中,唯一的方法就是将它与列表中的每个元素都比较一次

列表中有n个元素,那么顺序搜索经过 n 次比较后才能确定目标元素不在列表中。如果列表含目标元素,分析起来更复杂。实际上有 3 种可能的情况:

最好情况目标元素位于列表的第一个位置,则只需比较一次;

最坏情况目标元素位于最后一个位置,则需要比较 n次

平均情况目标元素位于中间位置,则需要比较 n / 2次。 --> 当n增大,系数则可省略,所以顺序搜索时间复杂度O(n)


有序列表

有序列表的顺序搜索过程

通过观察上图有序列表列表中的顺序搜索过程我们可以得出以下结论:

元素按升序排列

如果存在目标元素,那么它出现在 n个位置中任意一个位置的可能性仍然一样大,因此比较次数与在无序列表相同

But,如果不存在目标元素,那么搜索效率就会提高。---> 因为当找到比目标元素大的数的时候程序就会停止搜索

无序表的顺序搜索代码实现 

#有序表的顺序搜索
def ordered_sequential_search(a_list,item):pos = 0while pos < len(a_list):if a_list[pos] == item:return Trueelif a_list[pos] > item:return Falsepos += 1return False
print(ordered_sequential_search([1,2,4,5,9],6))

下表总结了,在有序表中搜索时的比较次数。

最好情况:只需比较1次。  平均情况比较 n / 2 次,但时间复杂度仍是O(n)。

总结:只有当列表不存在目标元素时,有序排列的元素,才能提高顺序搜索的效率

📝总结:

本篇文章介绍了搜索算法以及,有序列表在搜索算法中 的优势,前提条件是:只有当元素不在列表中时有序排列的元素,才能提高顺序搜索的效率

这篇关于【Python数据结构与算法】—— 搜索算法 | 期末复习不挂科系列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/476931

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python