12.ROS导航模块:gmapping、AMCL、map_server、move_base案例

2023-12-09 20:28

本文主要是介绍12.ROS导航模块:gmapping、AMCL、map_server、move_base案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 导航概述

2 导航简介

2.1 导航模块简介

1.全局地图

2.自身定位

3.路径规划

4.运动控制

5.环境感知

2.2 导航坐标系odom、map

1.简介

2.特点

3.坐标系变换

2.3 导航条件说明

1.硬件

2.软件

3 导航实现

3.1 创建本篇博客的功能包

3.2 建图--gmapping

3.2.1 gmapping简介

3.2.2 gmapping节点说明

3.2.2.1订阅的Topic

3.2.2.2发布的Topic

3.2.2.3服务

3.2.2.4参数

3.2.2.5所需的坐标变换

3.2.2.6发布的坐标变换

3.2.3 gmapping使用

3.2.3.1编写gmapping节点相关launch文件

3.2.3.2 执行

3.3 地图服务 map_server

3.3.1 map_server使用之地图保存节点(map_saver)

3.3.2  map_server使用之地图发布节点(map_saver)

3.3.3 地图配置文件

3.4 amcl定位

3.4.1 概念

3.4.1.1订阅的Topic

3.4.1.2发布的Topic

3.4.1.3服务

3.4.1.4调用的服务

3.4.1.5参数

3.4.16坐标变换

3.4.2 AMCL的使用

3.4.2.1 编写AMCL相关的文件

3.4.2.2 编写测试文件

3.5 路径规划move_base、代价地图

3.5.1 简介

3.5.2 move_base节点说明

3.5.3 move_base与代价地图

3.5.4 move_base的使用

3.5.4.1 编写launch文件

3.5.4.2 配置文件

3.4.5.3 launch文件集成

3.4.5.4 测试

3.4.5.5 显示全局/本地代价地图与全局/本地路径规划

3.4.5.6 配置文件的解释

3.4.5.7 参数配置小技巧

3.5.5 导航与SLAM建图

3.5.5.1 编写launch文件

4 导航信息

4.1 地图

4.1.1 nav_msgs/MapMetaData

4.1.2 nav_msgs/OccupancyGrid

4.2 里程计数据

4.3 TF

4.4 定位

4.5 路径规划


1 导航概述

        导航是机器人系统中最重要的模块之一,比如现在较为流行的服务型室内机器人,就是依赖于机器人导航来实现室内自主移动的,本章主要就是介绍仿真环境下的导航实现,主要内容有:

  • 导航相关概念
  • 导航实现:机器人建图(SLAM)、地图服务、定位、路径规划....以可视化操作为主。
  • 导航消息:了解地图、里程计、雷达、摄像头等相关消息格式。

预期达成的学习目标:

  • 了解导航模块中的组成部分以及相关概念
  • 能够在仿真环境下独立完成机器人导航

2 导航简介

2.1 导航模块简介

        在ROS中机器人导航(Navigation)由多个功能包组合实现,ROS 中又称之为导航功能包集,关于导航模块,官方介绍如下:

一个二维导航堆栈,它接收来自里程计、传感器流和目标姿态的信息,并输出发送到移动底盘的安全速度命令。

        更通俗的讲: 导航其实就是机器人自主的从 A 点移动到 B 点的过程。

        秉着"不重复发明轮子"的原则,ROS 中导航相关的功能包集为机器人导航提供了一套通用的实现,开发者不再需要关注于导航算法、硬件交互... 等偏复杂、偏底层的实现,这些实现都由更专业的研发人员管理、迭代和维护,开发者可以更专注于上层功能,而对于导航功能的调用,只需要根据自身机器人相关参数合理设置各模块的配置文件即可,当然,如果有必要,也可以基于现有的功能包二次开发实现一些定制化需求,这样可以大大提高研发效率,缩短产品落地时间。总而言之,对于一般开发者而言,ROS 的导航功能包集优势如下:

  • 安全: 由专业团队开发和维护

  • 功能: 功能更稳定且全面

  • 高效: 解放开发者,让开发者更专注于上层功能实现

        机器人是如何实现导航的呢?或换言之,机器人是如何从 A 点移动到 B 点呢?ROS 官方为了提供了一张导航功能包集的图示,该图中囊括了 ROS 导航的一些关键技术:

        假定我们已经以特定方式配置机器人,导航功能包集将使其可以运动。上图概述了这种配置方式。白色的部分是必须且已实现的组件,灰色的部分是可选且已实现的组件,蓝色的部分是必须为每一个机器人平台创建的组件。

总结下来,涉及的关键技术有如下五点:

  1. 全局地图

  2. 自身定位

  3. 路径规划

  4. 运动控制

  5. 环境感知

        机器人导航实现与无人驾驶类似,关键技术也是由上述五点组成,只是无人驾驶是基于室外的,而我们当前介绍的机器人导航更多是基于室内的。

        

1.全局地图

在现实生活中,当我们需要实现导航时,可能会首先参考一张全局性质的地图,然后根据地图来确定自身的位置、目的地位置,并且也会根据地图显示来规划一条大致的路线.... 对于机器人导航而言,也是如此,在机器人导航中地图是一个重要的组成元素,当然如果要使用地图,首先需要绘制地图。关于地图建模技术不断涌现,这其中有一门称之为 SLAM 的理论脱颖而出:

  1. SLAM(simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localization), 即时定位与地图构建,或并发建图与定位。SLAM问题可以描述为: 机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和地图进行自身定位,同时在自身定位的基础上建造增量式地图,以绘制出外部环境的完全地图。

  2. 在 ROS 中,较为常用的 SLAM 实现也比较多,比如: gmapping、hector_slam、cartographer、rgbdslam、ORB_SLAM ....

  3. 当然如果要完成 SLAM ,机器人必须要具备感知外界环境的能力,尤其是要具备获取周围环境深度信息的能力。感知的实现需要依赖于传感器,比如: 激光雷达、摄像头、RGB-D摄像头...

  4. SLAM 可以用于地图生成,而生成的地图还需要被保存以待后续使用,在 ROS 中保存地图的功能包是 map_server

另外注意: SLAM 虽然是机器人导航的重要技术之一,但是 二者并不等价,确切的讲,SLAM 只是实现地图构建和即时定位。

2.自身定位

导航伊始和导航过程中,机器人都需要确定当前自身的位置,如果在室外,那么 GPS 是一个不错的选择,而如果室内、隧道、地下或一些特殊的屏蔽 GPS 信号的区域,由于 GPS 信号弱化甚至完全不可用,那么就必须另辟蹊径了,比如前面的 SLAM 就可以实现自身定位,除此之外,ROS 中还提供了一个用于定位的功能包: amcl

amcl(adaptiveMonteCarloLocalization)自适应的蒙特卡洛定位,是用于2D移动机器人的概率定位系统。它实现了自适应(或KLD采样)蒙特卡洛定位方法,该方法使用粒子过滤器根据已知地图跟踪机器人的姿态。

3.路径规划

导航就是机器人从A点运动至B点的过程,在这一过程中,机器人需要根据目标位置计算全局运动路线,并且在运动过程中,还需要时时根据出现的一些动态障碍物调整运动路线,直至到达目标点,该过程就称之为路径规划。在 ROS 中提供了 move_base 包来实现路径规则,该功能包主要由两大规划器组成:

  1. 全局路径规划(gloable_planner)

    根据给定的目标点和全局地图实现总体的路径规划,使用 Dijkstra 或 A* 算法进行全局路径规划,计算最优路线,作为全局路线

  2. 本地时时规划(local_planner)

    在实际导航过程中,机器人可能无法按照给定的全局最优路线运行,比如:机器人在运行中,可能会随时出现一定的障碍物... 本地规划的作用就是使用一定算法(Dynamic Window Approaches) 来实现障碍物的规避,并选取当前最优路径以尽量符合全局最优路径

全局路径规划与本地路径规划是相对的,全局路径规划侧重于全局、宏观实现,而本地路径规划侧重与当前、微观实现。

4.运动控制

导航功能包集假定它可以通过话题"cmd_vel"发布geometry_msgs/Twist类型的消息,这个消息基于机器人的基座坐标系,它传递的是运动命令。这意味着必须有一个节点订阅"cmd_vel"话题, 将该话题上的速度命令转换为电机命令并发送。

5.环境感知

感知周围环境信息,比如: 摄像头、激光雷达、编码器...,摄像头、激光雷达可以用于感知外界环境的深度信息,编码器可以感知电机的转速信息,进而可以获取速度信息并生成里程计信息。

在导航功能包集中,环境感知也是一重要模块实现,它为其他模块提供了支持。其他模块诸如: SLAM、amcl、move_base 都需要依赖于环境感知。

2.2 导航坐标系odom、map

1.简介

定位是导航中的重要实现之一,所谓定位,就是参考某个坐标系(比如:以机器人的出发点为原点创建坐标系)在该坐标系中标注机器人。定位原理看似简单,但是这个这个坐标系不是客观存在的,我们也无法以上帝视角确定机器人的位姿,定位实现需要依赖于机器人自身,机器人需要逆向推导参考系原点并计算坐标系相对关系,该过程实现常用方式有两种:

  • 通过里程计定位:时时收集机器人的速度信息计算并发布机器人坐标系与父级参考系的相对关系。
  • 通过传感器定位:通过传感器收集外界环境信息通过匹配计算并发布机器人坐标系与父级参考系的相对关系。

两种方式在导航中都会经常使用。

2.特点

两种定位方式都有各自的优缺点。

里程计定位:

  • 优点:里程计定位信息是连续的,没有离散的跳跃。
  • 缺点:里程计存在累计误差,不利于长距离或长期定位。

传感器定位:

  • 优点:比里程计定位更精准;
  • 缺点:传感器定位会出现跳变的情况,且传感器定位在标志物较少的环境下,其定位精度会大打折扣。

两种定位方式优缺点互补,应用时一般二者结合使用。

3.坐标系变换

上述两种定位实现中,机器人坐标系一般使用机器人模型中的根坐标系(base_link 或 base_footprint),里程计定位时,父级坐标系一般称之为 odom,如果通过传感器定位,父级参考系一般称之为 map。当二者结合使用时,map 和 odom 都是机器人模型根坐标系的父级,这是不符合坐标变换中"单继承"的原则的,所以,一般会将转换关系设置为: map -> odom -> base_link 或 base_footprint。

2.3 导航条件说明

导航实现,在硬件和软件方面是由一定要求的,需要提前准备。

1.硬件

虽然导航功能包集被设计成尽可能的通用,在使用时仍然有三个主要的硬件限制:

  1. 它是为差速驱动的轮式机器人设计的。它假设底盘受到理想的运动命令的控制并可实现预期的结果,命令的格式为:x速度分量,y速度分量,角速度(theta)分量。

  2. 它需要在底盘上安装一个单线激光雷达。这个激光雷达用于构建地图和定位。

  3. 导航功能包集是为正方形的机器人开发的,所以方形或圆形的机器人将是性能最好的。 它也可以工作在任意形状和大小的机器人上,但是较大的机器人将很难通过狭窄的空间。

2.软件

导航功能实现之前,需要搭建一些软件环境:

  1. 毋庸置疑的,必须先要安装 ROS

  2. 当前导航基于仿真环境,先保证上一章的机器人系统仿真可以正常执行

    在仿真环境下,机器人可以正常接收 /cmd_vel 消息,并发布里程计消息,传感器消息发布也正常,也即导航模块中的运动控制和环境感知实现完毕

后续导航实现中,我们主要关注于: 使用 SLAM 绘制地图、地图服务、自身定位与路径规划。

3 导航实现

本节内容主要介绍导航的完整性实现,旨在掌握机器人导航的基本流程,该章涉及的主要内容如下:

  • SLAM建图(选用较为常见的gmapping)

  • 地图服务(可以保存和重现地图)

  • 机器人定位

  • 路径规划

  • 上述流程介绍完毕,还会对功能进一步集成实现探索式的SLAM建图。


准备工作

请先安装相关的ROS功能包:

  • 安装 gmapping 包(用于构建地图):sudo apt install ros-<ROS版本>-gmapping

  • 安装地图服务包(用于保存与读取地图):sudo apt install ros-<ROS版本>-map-server

  • 安装 navigation 包(用于定位以及路径规划):sudo apt install ros-<ROS版本>-navigation

新建功能包,并导入依赖: gmapping map_server amcl move_base

3.1 创建本篇博客的功能包

        CMakeLists.txt配置:

cmake_minimum_required(VERSION 2.8.3)
project(nav_robot)######################
### Cmake flags
######################
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -Wall -g -pthread")find_package(catkin REQUIRED COMPONENTSroscpprospyroslib# msgurdfxacrogmappingmap_serveramclmove_base
)catkin_package()include_directories(${catkin_INCLUDE_DIRS})

        package.xml配置:

<?xml version="1.0"?>
<package><name>nav_robot</name><version>0.0.0</version><description>A test</description><maintainer email="haha@nefu.com">haha</maintainer><author>HITLHW</author><license>BSD-3</license><buildtool_depend>catkin</buildtool_depend><build_depend>gmapping</build_depend><run_depend>gmapping</run_depend><build_depend>map_server</build_depend><run_depend>map_server</run_depend><build_depend>amcl</build_depend><run_depend>amcl</run_depend><build_depend>move_base</build_depend><run_depend>move_base</run_depend></package>

        编译一下:

        没问题。

3.2 建图--gmapping

3.2.1 gmapping简介

SLAM算法有多种,当前我们选用gmapping,后续会再介绍其他几种常用的SLAM实现。

gmapping 是ROS开源社区中较为常用且比较成熟的SLAM算法之一,gmapping可以根据移动机器人里程计数据和激光雷达数据来绘制二维的栅格地图,对应的,gmapping对硬件也有一定的要求:

  • 该移动机器人可以发布里程计消息
  • 机器人需要发布雷达消息(该消息可以通过水平固定安装的雷达发布,或者也可以将深度相机消息转换成雷达消息)

关于里程计与雷达数据,仿真环境中可以正常获取的,不再赘述,栅格地图如案例所示。

gmapping 安装前面也有介绍,命令如下:

sudo apt install ros-<ROS版本>-gmapping

3.2.2 gmapping节点说明

gmapping 功能包中的核心节点是:slam_gmapping。为了方便调用,需要先了解该节点订阅的话题、发布的话题、服务以及相关参数。

3.2.2.1订阅的Topic

tf (tf/tfMessage)

  • 用于雷达、底盘与里程计之间的坐标变换消息。

scan(sensor_msgs/LaserScan)

  • SLAM所需的雷达信息。
3.2.2.2发布的Topic

map_metadata(nav_msgs/MapMetaData)

  • 地图元数据,包括地图的宽度、高度、分辨率等,该消息会固定更新。

map(nav_msgs/OccupancyGrid)

  • 地图栅格数据,一般会在rviz中以图形化的方式显示。

~entropy(std_msgs/Float64)

  • 机器人姿态分布熵估计(值越大,不确定性越大)。
3.2.2.3服务

dynamic_map(nav_msgs/GetMap)

  • 用于获取地图数据。
3.2.2.4参数

~base_frame(string, default:"base_link")

  • 机器人基坐标系。

~map_frame(string, default:"map")

  • 地图坐标系。

~odom_frame(string, default:"odom")

  • 里程计坐标系。

~map_update_interval(float, default: 5.0)

  • 地图更新频率,根据指定的值设计更新间隔。

~maxUrange(float, default: 80.0)

  • 激光探测的最大可用范围(超出此阈值,被截断)。

~maxRange(float)

  • 激光探测的最大范围。

.... 参数较多,上述是几个较为常用的参数,其他参数介绍可参考官网。

3.2.2.5所需的坐标变换

雷达坐标系→基坐标系

  • 一般由 robot_state_publisher 或 static_transform_publisher 发布。

基坐标系→里程计坐标系

  • 一般由里程计节点发布。
3.2.2.6发布的坐标变换

地图坐标系→里程计坐标系

  • 地图到里程计坐标系之间的变换。

3.2.3 gmapping使用

3.2.3.1编写gmapping节点相关launch文件
<launch>
<param name="use_sim_time" value="true"/><node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen"><remap from="scan" to="scan"/><param name="base_frame" value="base_footprint"/><!--底盘坐标系--><param name="odom_frame" value="odom"/> <!--里程计坐标系--><param name="map_update_interval" value="5.0"/><param name="maxUrange" value="16.0"/><param name="sigma" value="0.05"/><param name="kernelSize" value="1"/><param name="lstep" value="0.05"/><param name="astep" value="0.05"/><param name="iterations" value="5"/><param name="lsigma" value="0.075"/><param name="ogain" value="3.0"/><param name="lskip" value="0"/><param name="srr" value="0.1"/><param name="srt" value="0.2"/><param name="str" value="0.1"/><param name="stt" value="0.2"/><param name="linearUpdate" value="1.0"/><param name="angularUpdate" value="0.5"/><param name="temporalUpdate" value="3.0"/><param name="resampleThreshold" value="0.5"/><param name="particles" value="30"/><param name="xmin" value="-50.0"/><param name="ymin" value="-50.0"/><param name="xmax" value="50.0"/><param name="ymax" value="50.0"/><param name="delta" value="0.05"/><param name="llsamplerange" value="0.01"/><param name="llsamplestep" value="0.01"/><param name="lasamplerange" value="0.005"/><param name="lasamplestep" value="0.005"/></node><node pkg="joint_state_publisher" name="joint_state_publisher" type="joint_state_publisher" /><node pkg="robot_state_publisher" name="robot_state_publisher" type="robot_state_publisher" /><node pkg="rviz" type="rviz" name="rviz" /><!-- 可以保存 rviz 配置并后期直接使用--><!--<node pkg="rviz" type="rviz" name="rviz"/>-->
</launch>

        参数:

1.use_sim_time:使用仿真时间,仿真下设置该参数为true。

2.<remap from="scan" to="scan"/> 设置雷达话题:to后面要设置为自己激光雷达的话题

3.map_update_interval 地图更新时间

4.maxUrange 雷达长度阈值

5.必须设置的:

      <param name="base_frame" value="base_footprint"/><!--底盘坐标系-->
      <param name="odom_frame" value="odom"/> <!--里程计坐标系-->

3.2.3.2 执行

1.先启动 Gazebo 仿真环境(此过程略)(上篇博客的)

roslaunch test gazebo_car.launch

2.然后再启动地图绘制的 launch 文件:

roslaunch nav_robot gmmaping.launch

3.启动键盘键盘控制节点,用于控制机器人运动建图

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

        调节RVIZ显示

        这三个是重合的。

        我们添加map:

        控制机器人运动构建地图。

        撞上了,...。

3.3 地图服务 map_server

        上一节我们已经实现通过gmapping的构建地图并在rviz中显示了地图,不过,上一节中地图数据是保存在内存中的,当节点关闭时,数据也会被一并释放,我们需要将栅格地图序列化到的磁盘以持久化存储,后期还要通过反序列化读取磁盘的地图数据再执行后续操作。在ROS中,地图数据的序列化与反序列化可以通过 map_server 功能包实现。

        map_server功能包中提供了两个节点: map_saver 和 map_server,前者用于将栅格地图保存到磁盘,后者读取磁盘的栅格地图并以服务的方式提供出去。

3.3.1 map_server使用之地图保存节点(map_saver)

订阅的topic:

map(nav_msgs/OccupancyGrid)

  • 订阅此话题用于生成地图文件。

        地图保存的语法比较简单,编写一个launch文件,内容如下:

<launch><arg name="filename" value="$(find mycar_nav)/map/nav" /><node name="map_save" pkg="map_server" type="map_saver" args="-f $(arg filename)" />
</launch>

        其中 mymap 是指地图的保存路径以及保存的文件名称。

        SLAM建图完毕后,执行该launch文件即可。

测试:

首先,参考上一节,依次启动仿真环境,键盘控制节点与SLAM节点;

然后,通过键盘控制机器人运动并绘图;

最后,通过上述地图保存方式保存地图。

结果:在指定路径下会生成两个文件,xxx.pgm 与 xxx.yaml

        第一行是地图保存的地址:我们创立文件夹:

        第二行:filename是保存的地图的名称,我们来演示一下。

roslaunch test gazebo_car.launch
roslaunch nav_robot gmmaping.launch
rosrun teleop_twist_keyboard teleop_twist_keyboard.py

        我们建立好地图后,启动我们的地图保存节点:

roslaunch nav_robot octomapserver.launch

        发现地图已经被保存下来了:

        xxx.pgm 本质是一张图片,直接使用图片查看程序即可打开。

        xxx.yaml 保存的是地图的元数据信息,用于描述图片,内容格式如下:

image: /home/liuhongwei/Desktop/final/nav_zhaoxuzuo/src/map/nav.pgm
resolution: 0.050000
origin: [-50.000000, -50.000000, 0.000000]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.196

3.3.2  map_server使用之地图发布节点(map_saver)

发布的话题

map_metadata(nav_msgs / MapMetaData)

  • 发布地图元数据。

map(nav_msgs / OccupancyGrid)

  • 地图数据。

服务

static_map(nav_msgs / GetMap)

  • 通过此服务获取地图。

参数

〜frame_id(字符串,默认值:“map”)

  • 地图坐标系。
<launch><!-- 设置地图的配置文件 --><arg name="map" default="nav.yaml" /><!-- 运行地图服务器,并且加载设置的地图--><node name="map_server" pkg="map_server" type="map_server" args="$(find mycar_nav)/map/$(arg map)"/>
</launch>

        直接执行这个launch文件就行。

        我们在rviz添加map组件:

3.3.3 地图配置文件

        1.image:地图资源的路径

        2.resolutuin:地图刻度尺单位 m/像素

        3.origin:地图的位姿信息(相对于rviz的原点信息)

        4.occupied_thresh:占用阈值

        5.free_thresh:空闲阈值,判断地图某一点是否被占用

        6.negate:取反

        为了演示这些参数的作用,我们打开RVIZ:

        origin就是右下角相对于axis的偏移。X+50 Y-50。第三个角度为偏航角度。

        我们如果把第三个参数改称0.3(弧度)

        对于占用阈值,地图中的障碍物判断:

        规则:白色可通行 黑色障碍物 蓝黑未知区域,怎么判断呢???地图中每个像素都有取值[0,255] 白色255 黑0 ,像素值设置为x。根据像素值设置一个比例:

        p = 255-x / 255 白色0黑色1,如果p>占用阈值为障碍物,p<空闲阈值可以通行。

        取反是黑的变白,白变黑。

3.4 amcl定位

3.4.1 概念

        所谓定位就是推算机器人自身在全局地图中的位置,当然,SLAM中也包含定位算法实现,不过SLAM的定位是用于构建全局地图的,是属于导航开始之前的阶段,而当前定位是用于导航中,导航中,机器人需要按照设定的路线运动,通过定位可以判断机器人的实际轨迹是否符合预期。在ROS的导航功能包集navigation中提供了 amcl 功能包,用于实现导航中的机器人定位。

        AMCL(adaptive Monte Carlo Localization) 是用于2D移动机器人的概率定位系统,它实现了自适应(或KLD采样)蒙特卡洛定位方法,可以根据已有地图使用粒子滤波器推算机器人位置。

        amcl 功能包中的核心节点是:amcl。为了方便调用,需要先了解该节点订阅的话题、发布的话题、服务以及相关参数。

3.4.1.1订阅的Topic

scan(sensor_msgs/LaserScan)

  • 激光雷达数据。

tf(tf/tfMessage)

  • 坐标变换消息。

initialpose(geometry_msgs/PoseWithCovarianceStamped)

  • 用来初始化粒子滤波器的均值和协方差。

map(nav_msgs/OccupancyGrid)

  • 获取地图数据。
3.4.1.2发布的Topic

amcl_pose(geometry_msgs/PoseWithCovarianceStamped)

  • 机器人在地图中的位姿估计。

particlecloud(geometry_msgs/PoseArray)

  • 位姿估计集合,rviz中可以被 PoseArray 订阅然后图形化显示机器人的位姿估计集合。

tf(tf/tfMessage)

  • 发布从 odom 到 map 的转换。
3.4.1.3服务

global_localization(std_srvs/Empty)

  • 初始化全局定位的服务。

request_nomotion_update(std_srvs/Empty)

  • 手动执行更新和发布更新的粒子的服务。

set_map(nav_msgs/SetMap)

  • 手动设置新地图和姿态的服务。
3.4.1.4调用的服务

static_map(nav_msgs/GetMap)

  • 调用此服务获取地图数据。
3.4.1.5参数

~odom_model_type(string, default:"diff")

  • 里程计模型选择: "diff","omni","diff-corrected","omni-corrected" (diff 差速、omni 全向轮)

~odom_frame_id(string, default:"odom")

  • 里程计坐标系。

~base_frame_id(string, default:"base_link")

  • 机器人极坐标系。

~global_frame_id(string, default:"map")

3.4.16坐标变换

里程计本身也是可以协助机器人定位的,不过里程计存在累计误差且一些特殊情况时(车轮打滑)会出现定位错误的情况,amcl 则可以通过估算机器人在地图坐标系下的姿态,再结合里程计提高定位准确度。

  • 里程计定位:只是通过里程计数据实现 /odom_frame 与 /base_frame 之间的坐标变换。
  • amcl定位: 可以提供 /map_frame 、/odom_frame 与 /base_frame 之间的坐标变换。

3.4.2 AMCL的使用

3.4.2.1 编写AMCL相关的文件
<launch>
<node pkg="amcl" type="amcl" name="amcl" output="screen"><!-- Publish scans from best pose at a max of 10 Hz --><param name="odom_model_type" value="diff"/><!-- 里程计模式为差分 --><param name="odom_alpha5" value="0.1"/><param name="transform_tolerance" value="0.2" /><param name="gui_publish_rate" value="10.0"/><param name="laser_max_beams" value="30"/><param name="min_particles" value="500"/><param name="max_particles" value="5000"/><param name="kld_err" value="0.05"/><param name="kld_z" value="0.99"/><param name="odom_alpha1" value="0.2"/><param name="odom_alpha2" value="0.2"/><!-- translation std dev, m --><param name="odom_alpha3" value="0.8"/><param name="odom_alpha4" value="0.2"/><param name="laser_z_hit" value="0.5"/><param name="laser_z_short" value="0.05"/><param name="laser_z_max" value="0.05"/><param name="laser_z_rand" value="0.5"/><param name="laser_sigma_hit" value="0.2"/><param name="laser_lambda_short" value="0.1"/><param name="laser_lambda_short" value="0.1"/><param name="laser_model_type" value="likelihood_field"/><!-- <param name="laser_model_type" value="beam"/> --><param name="laser_likelihood_max_dist" value="2.0"/><param name="update_min_d" value="0.2"/><param name="update_min_a" value="0.5"/><param name="odom_frame_id" value="odom"/><!-- 里程计坐标系 --><param name="base_frame_id" value="base_footprint"/><!-- 添加机器人基坐标系 --><param name="global_frame_id" value="map"/><!-- 添加地图坐标系 --><param name="resample_interval" value="1"/><param name="transform_tolerance" value="0.1"/><param name="recovery_alpha_slow" value="0.0"/><param name="recovery_alpha_fast" value="0.0"/>
</node>
</launch>

        odom_model_type:运动类型,差速

         <param name="odom_frame_id" value="odom"/><!-- 里程计坐标系 -->
         <param name="base_frame_id" value="base_footprint"/><!-- 添加机器人基坐标系 -->
         <param name="global_frame_id" value="map"/><!-- 添加地图坐标系 -->

3.4.2.2 编写测试文件

        testamcl.launch

        amcl节点是不可以单独运行的,运行 amcl 节点之前,需要先加载全局地图,然后启动 rviz 显示定位结果,上述节点可以集成进launch文件,内容示例如下:

<launch><arg name="map" default="nav.yaml" /><node name="map_server" pkg="map_server" type="map_server" args="$(find nav_robot)/map/$(arg map)"/><include file="$(find nav_robot)/launch/amcl.launch" /><node pkg="rviz" type="rviz" name="rviz"/>
</launch>

        先启动gazebo仿真环境:roslaunch test gazebo_car.launch

        启动键盘控制节点:rosrun teleop_twist_keyboard tele_twist_keyboard.py

        启动集成的amcl的launch文件:roslaunch nav_robot testamcl.launch

        启动如下节点:    

<node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" />
<node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" />

        在启动的 rviz 中,添加RobotModel、Map组件,分别显示机器人模型与地图,添加 posearray 插件,设置topic为particlecloud来显示 amcl 预估的当前机器人的位姿,箭头越是密集,说明当前机器人处于此位置的概率越高;

        我们控制机器人运动!

        箭头越是密集,说明当前机器人处于此位置的概率越高;

3.5 路径规划move_base、代价地图

3.5.1 简介

        毋庸置疑的,路径规划是导航中的核心功能之一,在ROS的导航功能包集navigation中提供了 move_base 功能包,用于实现此功能。

        move_base 功能包提供了基于动作(action)的路径规划实现,move_base 可以根据给定的目标点,控制机器人底盘运动至目标位置,并且在运动过程中会连续反馈机器人自身的姿态与目标点的状态信息。如前所述move_base主要由全局路径规划与本地路径规划组成。

3.5.2 move_base节点说明

        move_base功能包中的核心节点是:move_base。为了方便调用,需要先了解该节点action、订阅的话题、发布的话题、服务以及相关参数。

动作订阅

move_base/goal(move_base_msgs/MoveBaseActionGoal)

  • move_base 的运动规划目标。

move_base/cancel(actionlib_msgs/GoalID)

  • 取消目标。

动作发布

move_base/feedback(move_base_msgs/MoveBaseActionFeedback)

  • 连续反馈的信息,包含机器人底盘坐标。

move_base/status(actionlib_msgs/GoalStatusArray)

  • 发送到move_base的目标状态信息。

move_base/result(move_base_msgs/MoveBaseActionResult)

  • 操作结果(此处为空)。

订阅的Topic

move_base_simple/goal(geometry_msgs/PoseStamped)

  • 运动规划目标(与action相比,没有连续反馈,无法追踪机器人执行状态)。

发布的Topic

cmd_vel(geometry_msgs/Twist)

  • 输出到机器人底盘的运动控制消息。

服务

~make_plan(nav_msgs/GetPlan)

  • 请求该服务,可以获取给定目标的规划路径,但是并不执行该路径规划。

~clear_unknown_space(std_srvs/Empty)

  • 允许用户直接清除机器人周围的未知空间。

~clear_costmaps(std_srvs/Empty)

  • 允许清除代价地图中的障碍物,可能会导致机器人与障碍物碰撞,请慎用。

3.5.3 move_base与代价地图

        机器人导航(尤其是路径规划模块)是依赖于地图的,地图在SLAM时已经有所介绍了,ROS中的地图其实就是一张图片,这张图片有宽度、高度、分辨率等元数据,在图片中使用灰度值来表示障碍物存在的概率。不过SLAM构建的地图在导航中是不可以直接使用的,因为:

  1. SLAM构建的地图是静态地图,而导航过程中,障碍物信息是可变的,可能障碍物被移走了,也可能添加了新的障碍物,导航中需要时时的获取障碍物信息;
  2. 在靠近障碍物边缘时,虽然此处是空闲区域,但是机器人在进入该区域后可能由于其他一些因素,比如:惯性、或者不规则形体的机器人转弯时可能会与障碍物产生碰撞,安全起见,最好在地图的障碍物边缘设置警戒区,尽量禁止机器人进入...

所以,静态地图无法直接应用于导航,其基础之上需要添加一些辅助信息的地图,比如时时获取的障碍物数据,基于静态地图添加的膨胀区等数据。

        

        代价地图有两张:global_costmap(全局代价地图) 和 local_costmap(本地代价地图),前者用于全局路径规划,后者用于本地路径规划。

两张代价地图都可以多层叠加,一般有以下层级:

  • Static Map Layer:静态地图层,SLAM构建的静态地图。

  • Obstacle Map Layer:障碍地图层,传感器感知的障碍物信息。

  • Inflation Layer:膨胀层,在以上两层地图上进行膨胀(向外扩张),以避免机器人的外壳会撞上障碍物。

  • Other Layers:自定义costmap。

上图中,横轴是距离机器人中心的距离,纵轴是代价地图中栅格的灰度值。

  • 致命障碍:栅格值为254,此时障碍物与机器人中心重叠,必然发生碰撞;
  • 内切障碍:栅格值为253,此时障碍物处于机器人的内切圆内,必然发生碰撞;
  • 外切障碍:栅格值为[128,252],此时障碍物处于其机器人的外切圆内,处于碰撞临界,不一定发生碰撞;
  • 非自由空间:栅格值为(0,127],此时机器人处于障碍物附近,属于危险警戒区,进入此区域,将来可能会发生碰撞;
  • 自由区域:栅格值为0,此处机器人可以自由通过;
  • 未知区域:栅格值为255,还没探明是否有障碍物。

膨胀空间的设置可以参考非自由空间。

3.5.4 move_base的使用

路径规划算法在move_base功能包的move_base节点中已经封装完毕了,但是还不可以直接调用,因为算法虽然已经封装了,但是该功能包面向的是各种类型支持ROS的机器人,不同类型机器人可能大小尺寸不同,传感器不同,速度不同,应用场景不同....最后可能会导致不同的路径规划结果,那么在调用路径规划节点之前,我们还需要配置机器人参数。具体实现如下:

  1. 先编写launch文件模板
  2. 编写配置文件
  3. 集成导航相关的launch文件
  4. 测试
3.5.4.1 编写launch文件
<launch><node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen" clear_params="true"><rosparam file="$(find 功能包)/param/costmap_common_params.yaml" command="load" ns="global_costmap" /><rosparam file="$(find 功能包)/param/costmap_common_params.yaml" command="load" ns="local_costmap" /><rosparam file="$(find 功能包)/param/local_costmap_params.yaml" command="load" /><rosparam file="$(find 功能包)/param/global_costmap_params.yaml" command="load" /><rosparam file="$(find 功能包)/param/base_local_planner_params.yaml" command="load" /></node></launch>

        clear_params:这个节点执行之前,参数重置。

        respawn:节点关闭后不会重启。

        在功能包下新建 param 目录,复制下载的文件到此目录: costmap_common_params_burger.yaml、local_costmap_params.yaml、global_costmap_params.yaml、base_local_planner_params.yaml,并将costmap_common_params_burger.yaml 重命名为:costmap_common_params.yaml。

3.5.4.2 配置文件
#机器人几何参,如果机器人是圆形,设置 robot_radius,如果是其他形状设置 footprint
robot_radius: 0.12 #圆形
# footprint: [[-0.12, -0.12], [-0.12, 0.12], [0.12, 0.12], [0.12, -0.12]] #其他形状obstacle_range: 3.0 # 用于障碍物探测,比如: 值为 3.0,意味着检测到距离小于 3 米的障碍物时,就会引入代价地图
raytrace_range: 3.5 # 用于清除障碍物,比如:值为 3.5,意味着清除代价地图中 3.5 米以外的障碍物#膨胀半径,扩展在碰撞区域以外的代价区域,使得机器人规划路径避开障碍物
inflation_radius: 0.2
#代价比例系数,越大则代价值越小
cost_scaling_factor: 3.0#地图类型
map_type: costmap
#导航包所需要的传感器
observation_sources: scan
#对传感器的坐标系和数据进行配置。这个也会用于代价地图添加和清除障碍物。例如,你可以用激光雷达传感器用于在代价地图添加障碍物,再添加kinect用于导航和清除障碍物。
scan: {sensor_frame: laser, data_type: LaserScan, topic: scan, marking: true, clearing: true}
global_costmap:global_frame: map #地图坐标系robot_base_frame: base_footprint #机器人坐标系# 以此实现坐标变换update_frequency: 1.0 #代价地图更新频率publish_frequency: 1.0 #代价地图的发布频率transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间static_map: true # 是否使用一个地图或者地图服务器来初始化全局代价地图,如果不使用静态地图,这个参数为false.
local_costmap:global_frame: odom #里程计坐标系robot_base_frame: base_footprint #机器人坐标系update_frequency: 10.0 #代价地图更新频率publish_frequency: 10.0 #代价地图的发布频率transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间static_map: false  #不需要静态地图,可以提升导航效果rolling_window: true #是否使用动态窗口,默认为false,在静态的全局地图中,地图不会变化width: 3 # 局部地图宽度 单位是 mheight: 3 # 局部地图高度 单位是 mresolution: 0.05 # 局部地图分辨率 单位是 m,一般与静态地图分辨率保持一致
TrajectoryPlannerROS:# Robot Configuration Parametersmax_vel_x: 0.5 # X 方向最大速度min_vel_x: 0.1 # X 方向最小速速max_vel_theta:  1.0 # min_vel_theta: -1.0min_in_place_vel_theta: 1.0acc_lim_x: 1.0 # X 加速限制acc_lim_y: 0.0 # Y 加速限制acc_lim_theta: 0.6 # 角速度加速限制# Goal Tolerance Parameters,目标公差xy_goal_tolerance: 0.10yaw_goal_tolerance: 0.05# Differential-drive robot configuration
# 是否是全向移动机器人holonomic_robot: false# Forward Simulation Parameters,前进模拟参数sim_time: 0.8vx_samples: 18vtheta_samples: 20sim_granularity: 0.05

3.4.5.3 launch文件集成

        如果要实现导航,需要集成地图服务、amcl 、move_base 与 Rviz 等,集成示例如下:

<launch><arg name="map" default="nav.yaml" /><node name="map_server" pkg="map_server" type="map_server" args="$(find nav_robot)/map/$(arg map)"/><include file="$(find nav_robot)/launch/amcl.launch" /><include file="$(find nav_robot)/launch/move_base.launch" /><node pkg="rviz" type="rviz" name="rviz" /><node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" /><node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" /></launch>

3.4.5.4 测试

1.先启动 Gazebo 仿真环境(此过程略);

roslaunch test gazebo_car.launch

2.启动导航相关的 launch 文件;

roslaunch nav_robot nav_test.launch

3.添加Rviz组件(参考演示结果),可以将配置数据保存,后期直接调用;

        我们选择一个2D Nav。

        等一回。。。

        导航到了!

3.4.5.5 显示全局/本地代价地图与全局/本地路径规划

        我们先在RVIZ中提供一个全局的代价地图:

        再添加一个本地代价地图:

        添加路径的全局路径规划,本地路径规划:

3.4.5.6 配置文件的解释

costmap_common_params.yaml

        该文件是move_base 在全局路径规划与本地路径规划时调用的通用参数,包括:机器人的尺寸、距离障碍物的安全距离、传感器信息等。配置参考如下:

#机器人几何参,如果机器人是圆形,设置 robot_radius,如果是其他形状设置 footprint
robot_radius: 0.12 #圆形
# footprint: [[-0.12, -0.12], [-0.12, 0.12], [0.12, 0.12], [0.12, -0.12]] #其他形状obstacle_range: 3.0 # 用于障碍物探测,比如: 值为 3.0,意味着检测到距离小于 3 米的障碍物时,就会引入代价地图
raytrace_range: 3.5 # 用于清除障碍物,比如:值为 3.5,意味着清除代价地图中 3.5 米以外的障碍物#膨胀半径,扩展在碰撞区域以外的代价区域,使得机器人规划路径避开障碍物
inflation_radius: 0.2(米)
#代价比例系数,越大则代价值越小
cost_scaling_factor: 3.0#地图类型
map_type: costmap
#导航包所需要的传感器
observation_sources: scan
#对传感器的坐标系和数据进行配置。这个也会用于代价地图添加和清除障碍物。例如,你可以用激光雷达传感器用于在代价地图添加障碍物,再添加kinect用于导航和清除障碍物。
scan: {sensor_frame: laser, data_type: LaserScan, topic: scan, marking: true, clearing: true}

        我们的机器人是0.1m,但是考虑到还有一些别的突出,,把它的半径设置为0.1m。

        obstacle_range、raytrace_range表示当动态物体进入的时候,什么时候加入RVIZ中的代价地图(障碍物距离我3m时会引入代价地图中,障碍物距离我3.5m外清除出代价地图)

        将膨胀半径增加,看看会出现什么样的效果:

        代价比例系数,越大则代价值越小。

        #导航包所需要的传感器
        observation_sources: scan
        #对传感器的坐标系和数据进行配置。这个也会用于代价地图添加和清除障碍物。例如,你可以用激光雷达传感器用于在代价地图添加障碍物,再添加kinect用于导航和清除障碍物。
        scan: {sensor_frame: laser, data_type: LaserScan, topic: scan, marking: true(是否用激光雷达用作障碍物的标注和清除), clearing: true}

        全局代价地图的配置 global_costmap_params.yaml

global_costmap:global_frame: map #地图坐标系robot_base_frame: base_footprint #机器人坐标系# 以此实现坐标变换update_frequency: 1.0 #代价地图更新频率publish_frequency: 1.0 #代价地图的发布频率transform_tolerance: 1.0 #等待坐标变换发布信息的超时时间static_map: true # 是否使用一个地图或者地图服务器来初始化全局代价地图,如果不使用静态地图,这个参数为false.

        本地代价地图:local_costmap_params.yaml

local_costmap:global_frame: odom #里程计坐标系robot_base_frame: base_footprint #机器人坐标系update_frequency: 10.0 #代价地图更新频率publish_frequency: 10.0 #代价地图的发布频率transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间static_map: false  #不需要静态地图,可以提升导航效果rolling_window: true #是否使用动态窗口,默认为false,在静态的全局地图中,地图不会变化width: 3 # 局部地图宽度 单位是 mheight: 3 # 局部地图高度 单位是 mresolution: 0.05 # 局部地图分辨率 单位是 m,一般与静态地图分辨率保持一致

        机器人运动参数:基本的局部规划器参数配置,这个配置文件设定了机器人的最大和最小速度限制值,也设定了加速度的阈值。

TrajectoryPlannerROS:# Robot Configuration Parametersmax_vel_x: 0.5 # X 方向最大速度min_vel_x: 0.1 # X 方向最小速速max_vel_theta:  1.0 # min_vel_theta: -1.0min_in_place_vel_theta: 1.0acc_lim_x: 1.0 # X 加速限制acc_lim_y: 0.0 # Y 加速限制acc_lim_theta: 0.6 # 角速度加速限制# Goal Tolerance Parameters,目标公差xy_goal_tolerance: 0.10yaw_goal_tolerance: 0.05# Differential-drive robot configuration
# 是否是全向移动机器人holonomic_robot: false# Forward Simulation Parameters,前进模拟参数sim_time: 0.8vx_samples: 18vtheta_samples: 20sim_granularity: 0.05

        Goal Tolerance Parameters,目标公差
  xy_goal_tolerance: 0.10
  yaw_goal_tolerance: 0.05

        允许和导航目标有一点距离和角度偏差。

        是否是全向移动机器人:麦克轮设置为true。

        前进模拟参数:本地路径规划和全局路径规划有点大像喝酒一样!!如果差距比较大就要调试这些参数了,如果想让本地路径规划和全局路径规划贴合的话可以将sim_time设置的长一点。

3.4.5.7 参数配置小技巧

        以上配置在实操中,可能会出现机器人在本地路径规划时与全局路径规划不符而进入膨胀区域出现假死的情况,如何尽量避免这种情形呢?

全局路径规划与本地路径规划虽然设置的参数是一样的,但是二者路径规划和避障的职能不同,可以采用不同的参数设置策略:

  • 全局代价地图可以将膨胀半径和障碍物系数设置的偏大一些;
  • 本地代价地图可以将膨胀半径和障碍物系数设置的偏小一些。

这样,在全局路径规划时,规划的路径会尽量远离障碍物,而本地路径规划时,机器人即便偏离全局路径也会和障碍物之间保留更大的自由空间,从而避免了陷入“假死”的情形。

3.5.5 导航与SLAM建图

        SLAM建图中,我们是通过键盘控制机器人移动实现建图的,而后续又介绍了机器人的自主移动实现,那么可不可以将二者结合,实现机器人自主移动的SLAM建图呢?

上述需求是可行的。虽然可能会有疑问,导航时需要地图信息,之前导航实现时,是通过         map_server 包的 map_server 节点来发布地图信息的,如果不先通过SLAM建图,那么如何发布地图信息呢?SLAM建图过程中本身就会时时发布地图信息,所以无需再使用map_server,SLAM已经发布了话题为 /map 的地图消息了,且导航需要定位模块,SLAM本身也是可以实现定位的。

该过程实现比较简单,步骤如下:

  1. 编写launch文件,集成SLAM与move_base相关节点;
  2. 执行launch文件并测试。
3.5.5.1 编写launch文件

        集成SLAM与move_base相关节点

<launch><!-- 启动SLAM节点 --><include file="$(find nav_robot)/launch/gmmapping.launch" /><!-- 运行move_base节点 --><include file="$(find nav_robot)/launch/move_base.launch" /><!-- 运行rviz --><node pkg="rviz" type="rviz" name="rviz" />
</launch>

1.首先运行gazebo仿真环境;

2.然后执行launch文件;

3.在rviz中通过2D Nav Goal设置目标点,机器人开始自主移动并建图了;

4.最后可以使用 map_server 保存地图。

        设置目标点:

        OK~

4 导航信息

在导航功能包集中包含了诸多节点,毋庸置疑的,不同节点之间的通信使用到了消息中间件(数据载体),在上一节的实现中,这些消息已经在rviz中做了可视化处理,比如:地图、雷达、摄像头、里程计、路径规划...的相关消息在rviz中提供了相关组件,本节主要介绍这些消息的具体格式。

4.1 地图

4.1.1 nav_msgs/MapMetaData

nav_msgs/MapMetaData

  • 地图元数据,包括地图的宽度、高度、分辨率等。

nav_msgs/OccupancyGrid

  • 地图栅格数据,一般会在rviz中以图形化的方式显示。

调用rosmsg info nav_msgs/MapMetaData显示消息内容如下:origin改变的话地图相对于RVIZ也会改变

time map_load_time
float32 resolution #地图分辨率
uint32 width #地图宽度
uint32 height #地图高度
geometry_msgs/Pose origin #地图位姿数据geometry_msgs/Point positionfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion orientationfloat64 xfloat64 yfloat64 zfloat64 w

4.1.2 nav_msgs/OccupancyGrid

调用 rosmsg info nav_msgs/OccupancyGrid显示消息内容如下:

        我们演示一下,让map_server读取地图:

        我们输出map信息到一个txt文件:rostopic echo /map >> map.txt

        看一下数据:

        大部分数据都是-1表示未探索区域,0是空闲,100是占用。

        但是全局代价地图有0-100之间的数据,靠近障碍物高,远离低。

std_msgs/Header headeruint32 seqtime stampstring frame_id
#--- 地图元数据
nav_msgs/MapMetaData infotime map_load_timefloat32 resolutionuint32 widthuint32 heightgeometry_msgs/Pose origingeometry_msgs/Point positionfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion orientationfloat64 xfloat64 yfloat64 zfloat64 w
#--- 地图内容数据,数组长度 = width * height
int8[] data

4.2 里程计数据

        里程计相关消息是:nav_msgs/Odometry,调用rosmsg info nav_msgs/Odometry 显示消息内容如下:

std_msgs/Header headeruint32 seqtime stampstring frame_id
string child_frame_id
geometry_msgs/PoseWithCovariance posegeometry_msgs/Pose pose #里程计位姿geometry_msgs/Point positionfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion orientationfloat64 xfloat64 yfloat64 zfloat64 wfloat64[36] covariance
geometry_msgs/TwistWithCovariance twistgeometry_msgs/Twist twist #速度geometry_msgs/Vector3 linearfloat64 xfloat64 yfloat64 zgeometry_msgs/Vector3 angularfloat64 xfloat64 yfloat64 z    # 协方差矩阵float64[36] covariance

4.3 TF

坐标变换相关消息是: tf/tfMessage,调用rosmsg info tf/tfMessage 显示消息内容如下:

geometry_msgs/TransformStamped[] transforms #包含了多个坐标系相对关系数据的数组std_msgs/Header headeruint32 seqtime stampstring frame_idstring child_frame_idgeometry_msgs/Transform transformgeometry_msgs/Vector3 translationfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion rotationfloat64 xfloat64 yfloat64 zfloat64 w

4.4 定位

定位相关消息是:geometry_msgs/PoseArray,调用rosmsg info geometry_msgs/PoseArray显示消息内容如下:

std_msgs/Header headeruint32 seqtime stampstring frame_id
geometry_msgs/Pose[] poses #预估的点位姿组成的数组geometry_msgs/Point positionfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion orientationfloat64 xfloat64 yfloat64 zfloat64 w

4.5 路径规划

目标点相关消息是:move_base_msgs/MoveBaseActionGoal,调用rosmsg info move_base_msgs/MoveBaseActionGoal显示消息内容如下:

std_msgs/Header headeruint32 seqtime stampstring frame_id
actionlib_msgs/GoalID goal_idtime stampstring id
move_base_msgs/MoveBaseGoal goalgeometry_msgs/PoseStamped target_posestd_msgs/Header headeruint32 seqtime stampstring frame_idgeometry_msgs/Pose pose #目标点位姿geometry_msgs/Point positionfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion orientationfloat64 xfloat64 yfloat64 zfloat64 w

路径规划相关消息是:nav_msgs/Path,调用rosmsg info nav_msgs/Path显示消息内容如下:

std_msgs/Header headeruint32 seqtime stampstring frame_id
geometry_msgs/PoseStamped[] poses #由一系列点组成的数组std_msgs/Header headeruint32 seqtime stampstring frame_idgeometry_msgs/Pose posegeometry_msgs/Point positionfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion orientationfloat64 xfloat64 yfloat64 zfloat64 w

这篇关于12.ROS导航模块:gmapping、AMCL、map_server、move_base案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/474966

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

Collection List Set Map的区别和联系

Collection List Set Map的区别和联系 这些都代表了Java中的集合,这里主要从其元素是否有序,是否可重复来进行区别记忆,以便恰当地使用,当然还存在同步方面的差异,见上一篇相关文章。 有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否

Jenkins构建Maven聚合工程,指定构建子模块

一、设置单独编译构建子模块 配置: 1、Root POM指向父pom.xml 2、Goals and options指定构建模块的参数: mvn -pl project1/project1-son -am clean package 单独构建project1-son项目以及它所依赖的其它项目。 说明: mvn clean package -pl 父级模块名/子模块名 -am参数

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类