分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测

2023-12-09 18:36

本文主要是介绍分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测

目录

    • 分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.GASF-CNN格拉姆角场-卷积神经网络的数据分类预测(完整源码和数据)
2.自带数据,多输入,单输出,多分类。程序可出分类效果图,混淆矩阵图。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2022及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

模型描述

GASF-CNN(Gramian Angular Summation Field Convolutional Neural Network)是一种基于格拉姆角场和卷积神经网络的数据分类预测方法。

GASF是一种将时间序列数据转换为图像表示的方法。它基于格拉姆角和和求和运算,将时间序列数据转换为二维矩阵。这个转换过程捕捉了时间序列数据的周期性和相对关系,从而提供了更丰富的特征表示。
在这里插入图片描述

卷积神经网络(CNN)是一种常用的深度学习模型,专门用于处理具有网格结构的数据,如图像。CNN通过在输入数据上应用一系列的卷积操作和非线性激活函数,自动学习输入数据中的特征。在图像分类任务中,CNN已经取得了很大的成功。

GASF-CNN结合了GASF和CNN的优势,用于数据分类预测。其基本步骤如下:

输入数据准备:将时间序列数据转换为GASF表示。这涉及将时间序列数据划分为小的时间窗口,并使用GASF算法将每个时间窗口转换为GASF图像。

卷积神经网络构建:建立一个CNN模型,用于从GASF图像中学习特征并进行数据分类。CNN模型通常由卷积层、池化层、全连接层等组成,可以根据具体任务进行设计。

模型训练:使用标记的训练数据对GASF-CNN模型进行训练。通过将GASF图像作为输入,将标签作为目标输出,使用反向传播算法和优化技术(如随机梯度下降)来调整模型参数,以最小化预测错误。

模型预测:使用训练好的GASF-CNN模型对新的未标记数据进行分类预测。将未标记数据转换为GASF图像,并通过CNN模型获取预测结果。

GASF-CNN方法适用于各种类型的时间序列数据分类任务,如股票价格预测、心电图分类、运动识别等。它通过结合GASF的优势和CNN的特征学习能力,提供了一种强大的数据分类预测方法。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据私信博主回复GASF-CNN格拉姆角场-卷积神经网络的数据分类预测
 convolution2dLayer([3, 1], 16)  % 卷积核大小 3*1 生成16张特征图batchNormalizationLayer         % 批归一化层reluLayer                       % Relu激活层convolution2dLayer([3, 1], 32)  % 卷积核大小 3*1 生成32张特征图batchNormalizationLayer         % 批归一化层reluLayer                       % Relu激活层fullyConnectedLayer(1)          % 全连接层regressionLayer];               % 回归层
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法'MaxEpochs', 300, ...                  % 最大训练次数 300'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1'LearnRateDropPeriod', 200, ...        % 经过200次训练后 学习率为 0.01 * 0.1'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'Plots', 'training-progress', ...      % 画出曲线'Verbose', false);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/127179100

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

这篇关于分类预测 | GASF-CNN格拉姆角场-卷积神经网络的数据分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/474677

相关文章

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入