本文主要是介绍HIVE 处理日志,自定义inputformat 完整版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
网上找了很多材料都是写了部份代码的,今天在峰哥的帮助下实现了此功能。
为何要设置此功能是由于 hive fields terminated by '||||' 不支持 字符串导致
将你的inputformat类打成jar包,如MyInputFormat.jar
将MyInputFormat.jar放到 hive/lib里,然后就可以建表了
假设你的inputFormat类路径是com.hive.myinput
则建表语句为:create table tbname(name stirng,id int, ...) stored as INPUTFORMAT 'com.hive.myinput' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
HiveIgnoreKeyTextOutputFormat是系统自带的outputformat类,你也可以自定义
由于hive是基于hadoop集群运行的,所以hadoop/lib里面也必须放入MyInputFormat.jar,
此功能需要二个CLASS 类:ClickstreamInputFormat ClickstreamRecordReader
package com.jd.cloud.clickstore;import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.JobConfigurable;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;/**
* 自定义hadoop的 org.apache.hadoop.mapred.InputFormat
*
* @author winston
*
*/
public class ClickstreamInputFormat extends TextInputFormat implements JobConfigurable { public RecordReader<LongWritable, Text> getRecordReader( InputSplit genericSplit, JobConf job, Reporter reporter) throws IOException { reporter.setStatus(genericSplit.toString()); return new ClickstreamRecordReader((FileSplit) genericSplit,job); }
}
package com.jd.cloud.clickstore;import java.io.IOException;
import java.io.InputStream;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.util.LineReader;
import org.apache.hadoop.mapred.RecordReader;public class ClickstreamRecordReader implementsRecordReader<LongWritable, Text> {private CompressionCodecFactory compressionCodecs = null;private long start;private long pos;private long end;private LineReader lineReader;int maxLineLength;public ClickstreamRecordReader(FileSplit inputSplit, Configuration job)throws IOException {maxLineLength = job.getInt("mapred.ClickstreamRecordReader.maxlength",Integer.MAX_VALUE);start = inputSplit.getStart();end = start + inputSplit.getLength();final Path file = inputSplit.getPath();compressionCodecs = new CompressionCodecFactory(job);final CompressionCodec codec = compressionCodecs.getCodec(file);// Open file and seek to the start of the splitFileSystem fs = file.getFileSystem(job);FSDataInputStream fileIn = fs.open(file);boolean skipFirstLine = false;if (codec != null) {lineReader = new LineReader(codec.createInputStream(fileIn), job);end = Long.MAX_VALUE;} else {if (start != 0) {skipFirstLine = true;--start;fileIn.seek(start);}lineReader = new LineReader(fileIn, job);}if (skipFirstLine) {start += lineReader.readLine(new Text(), 0,(int) Math.min((long) Integer.MAX_VALUE, end - start));}this.pos = start;}public ClickstreamRecordReader(InputStream in, long offset, long endOffset,int maxLineLength) {this.maxLineLength = maxLineLength;this.lineReader = new LineReader(in);this.start = offset;this.pos = offset;this.end = endOffset;}public ClickstreamRecordReader(InputStream in, long offset, long endOffset,Configuration job) throws IOException {this.maxLineLength = job.getInt("mapred.ClickstreamRecordReader.maxlength", Integer.MAX_VALUE);this.lineReader = new LineReader(in, job);this.start = offset;this.pos = offset;this.end = endOffset;}public LongWritable createKey() {return new LongWritable();}public Text createValue() {return new Text();}/*** Reads the next record in the split. get usefull fields from the raw nginx* log.* * @param key* key of the record which will map to the byte offset of the* record's line* @param value* the record in text format* @return true if a record existed, false otherwise* @throws IOException*/public synchronized boolean next(LongWritable key, Text value)throws IOException {// Stay within the splitwhile (pos < end) {key.set(pos);int newSize = lineReader.readLine(value, maxLineLength,Math.max((int) Math.min(Integer.MAX_VALUE, end - pos),maxLineLength));if (newSize == 0)return false;String str = value.toString().toLowerCase().replaceAll("\\@\\_\\@", "\001");value.set(str);pos += newSize;if (newSize < maxLineLength)return true;}return false;}public float getProgress() {if (start == end) {return 0.0f;} else {return Math.min(1.0f, (pos - start) / (float) (end - start));}}public synchronized long getPos() throws IOException {return pos;}public synchronized void close() throws IOException {if (lineReader != null)lineReader.close();}// 测试 输出//public static void main(String ags[]){// String str1 ="123@_@abcd@_@fk".replaceAll("\\@\\_\\@", "\001");// System.out.println(str1);//}
}
1.上传到 HIVE 服务器上 JAVAC 编译
javac -cp ./:/usr/lib/hadoop/hadoop-common.jar:/home/op1/hadoop/hadoop-core-1.0.3.jar:/usr/lib/hadoop/lib/commons-logging-1.1.1.jar */**/*/*/*
2.JAR 打包 类文件
jar -cf ClickstreamInputFormat.jar /home/op1/uerdwdb/src/
3.复制 Hive/lib Hadoop/lib 文件夹内
4.Hive 创建表命令
create table hive_text(num int,name string,`add` string)
stored as INPUTFORMAT 'com.jd.cloud.clickstore.ClickstreamInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
location '/home/op1/uerdwdb/text.txt';
这篇关于HIVE 处理日志,自定义inputformat 完整版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!