本文主要是介绍【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛
赛道 B复赛:电商零售商家需求预测及库存优化问题
问题一
目标:制定补货计划,基于预测销量。
背景:固定库存盘点周期NRT=1, 提前期LT=3天。
初始条件:所有商品期初库存为5,持有成本及缺货成本与商品价格正相关。
策略:周期性盘点库存策略(s,S)。
数据处理:需结合历史及预测需求量。
任务:提供2023-05-16至2023-05-30期间的补货计划(每天的s和S值)。
目标指标:降低成本,提升服务水平,降低库存周转天数。
问题二
目标:撰写关于电商零售商家需求预测及库存优化问题的总结报告。
内容要求:报告中需要明确团队方案的优缺点。
附件说明
结果表4:库存补货结果表,包含商家编码、商品编码、仓库编码、日期、库存决策变量(s和S)、当天期初库存、当天期末库存、预测需求量和补货量等字段。
总结问题一团队认为可以采用的方法为:基于模拟退火求解规划问题;基于遗传算法求解规划问题;使用库存管理理论,如经济订货量(EOQ)模型;基于机器学习的预测模型;基于修正机器学习的预测模型
团队将选取至少3种方法分别进行求解。
mbd.pub/o/bread/mbd-ZZeckpxs
商品价格数据的Excel文件:
这个数据表包含了商品编号(product_no)和相应的价格(price)。
预测结果表,包含以下信息:
商家编号(seller_no)
商品编号(product_no)
仓库编号(warehouse_no)
日期范围(date),这里显示的是从2023-05-16至2023-05-30的日期范围
预测需求量(forecast_qty)
对原始数据做可视化:
预测需求量的分布:这个图表显示了预测需求量的分布情况。可以看到需求量的分布范围和集中趋势。
商品价格的分布:这个图表显示了商品价格的分布情况。通过这个图表,我们可以了解商品价格的波动和集中趋势。
每个商家的预测产品数量:这个图表显示了各个商家的预测产品数量。这有助于了解哪些商家的产品数量较多,可能需要更多关注。
每个仓库的产品数量:这个图表展示了每个仓库中的产品数量。这有助于分析不同仓库的库存分布情况。
最常见的商品价格(前10名):这个图表显示了最常见的商品价格及其出现频率。这可以帮助我们理解价格分布的重点区域。
价格分布图:这个直方图显示了商品价格的分布情况,并包含一个核密度估计(KDE)曲线,可以帮助理解价格的总体分布趋势。
价格箱线图:这个箱线图提供了商品价格的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),以及可能的异常值。
价格密度图:这个密度图展示了价格的概率密度分布,可以帮助更详细地了解价格分布的形状。
补货模型的构建步骤
- 数据整合
将商品价格数据与预测需求数据结合,以便在补货决策中考虑成本。 - 确定补货策略
我们将采用周期性盘点库存策略(s, S)。
根据商品的预测需求和价格确定每个商品的s和S值。 - 考虑库存成本
考虑持有成本(基于商品价格和库存水平)和缺货成本(当需求不能被满足时)。
目标是平衡成本和服务水平。 - 模型实现
使用Python来实现这个模型。
可以考虑使用库存管理理论,如经济订货量(EOQ)模型
或者基于机器学习的预测模型。
或者构建规划方程 - 模型测试与优化
测试模型在不同参数下的表现。
根据成本、库存水平和服务水平进行优化。 - 结果输出
输出2023-05-16至2023-05-30期间的补货计划
结合了预测需求数据和商品价格来计算每个商品的补货点(s值)和目标库存水平(S值)。这里,s和S的计算基于简单的假设
需要考虑了持有成本和缺货成本,这些成本根据商品价格和设定的比率计算得出。
下一步
参数调整:根据具体需求和成本考虑,调整s和S的计算方法。
模型验证:测试模型以确保其准确性和有效性。
优化策略:可能需要进一步优化策略,以更好地适应实际情况。
#初步代码
import pandas as pd
import numpy as np
File paths
forecast_results_file_path = ‘结果表1-预测结果表.xlsx’
product_price_file_path = ‘商品价格数据.xlsx’
Load the forecast results data
forecast_results_data = pd.read_excel(forecast_results_file_path)
Load the product price data
product_price_data = pd.read_excel(product_price_file_path)
Constants and assumptions
initial_inventory = 5 # Initial inventory level for all products
lead_time = 3 # Lead time in days
review_period = 1 # Review period in days
holding_cost_rate = 0.01 # Holding cost rate (percentage of product price)
shortage_cost_rate = 0.02 # Shortage cost rate (percentage of product price)
Merging forecast data with price data
merged_data = forecast_results_data.merge(product_price_data, on=‘product_no’, how=‘left’)
Function to calculate s and S values for each product
def calculate_replenish_points(row):
forecast_demand = row[‘forecast_qty’]
price = row[‘price’]
holding_cost_per_unit = price * holding_cost_rate
shortage_cost_per_unit = price * shortage_cost_rate
return s, S
Apply the function to each row in the dataframe
merged_data[[‘s’, ‘S’]] = merged_data.apply(lambda row: calculate_replenish_points(row), axis=1, result_type=“expand”)
Display the updated dataframe
merged_data.head()
初步预测结果对可视化
预测数量分布图:这个直方图展示了预测数量的分布情况,并包含一个核密度估计(KDE)曲线,有助于理解预测数量的总体分布趋势。
预测数量箱线图:这个箱线图提供了预测数量的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),以及可能的异常值。
预测数量密度图:这个密度图显示了预测数量的概率密度分布,可以更详细地了解预测数量分布的形状。
这篇关于【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!