【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题

本文主要是介绍【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023 年 MathorCup 高校数学建模挑战赛——大数据竞赛
赛道 B复赛:电商零售商家需求预测及库存优化问题

问题一
目标:制定补货计划,基于预测销量。
背景:固定库存盘点周期NRT=1, 提前期LT=3天。
初始条件:所有商品期初库存为5,持有成本及缺货成本与商品价格正相关。
策略:周期性盘点库存策略(s,S)。
数据处理:需结合历史及预测需求量。
任务:提供2023-05-16至2023-05-30期间的补货计划(每天的s和S值)。
目标指标:降低成本,提升服务水平,降低库存周转天数。
问题二
目标:撰写关于电商零售商家需求预测及库存优化问题的总结报告。
内容要求:报告中需要明确团队方案的优缺点。
附件说明
结果表4:库存补货结果表,包含商家编码、商品编码、仓库编码、日期、库存决策变量(s和S)、当天期初库存、当天期末库存、预测需求量和补货量等字段。

总结问题一团队认为可以采用的方法为:基于模拟退火求解规划问题;基于遗传算法求解规划问题;使用库存管理理论,如经济订货量(EOQ)模型;基于机器学习的预测模型;基于修正机器学习的预测模型
团队将选取至少3种方法分别进行求解。

mbd.pub/o/bread/mbd-ZZeckpxs

商品价格数据的Excel文件:
这个数据表包含了商品编号(product_no)和相应的价格(price)。

预测结果表,包含以下信息:
商家编号(seller_no)
商品编号(product_no)
仓库编号(warehouse_no)
日期范围(date),这里显示的是从2023-05-16至2023-05-30的日期范围
预测需求量(forecast_qty)
对原始数据做可视化:

在这里插入图片描述

预测需求量的分布:这个图表显示了预测需求量的分布情况。可以看到需求量的分布范围和集中趋势。
商品价格的分布:这个图表显示了商品价格的分布情况。通过这个图表,我们可以了解商品价格的波动和集中趋势。

在这里插入图片描述

每个商家的预测产品数量:这个图表显示了各个商家的预测产品数量。这有助于了解哪些商家的产品数量较多,可能需要更多关注。
每个仓库的产品数量:这个图表展示了每个仓库中的产品数量。这有助于分析不同仓库的库存分布情况。
最常见的商品价格(前10名):这个图表显示了最常见的商品价格及其出现频率。这可以帮助我们理解价格分布的重点区域。

在这里插入图片描述

价格分布图:这个直方图显示了商品价格的分布情况,并包含一个核密度估计(KDE)曲线,可以帮助理解价格的总体分布趋势。
价格箱线图:这个箱线图提供了商品价格的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),以及可能的异常值。
价格密度图:这个密度图展示了价格的概率密度分布,可以帮助更详细地了解价格分布的形状。

补货模型的构建步骤

  1. 数据整合
    将商品价格数据与预测需求数据结合,以便在补货决策中考虑成本。
  2. 确定补货策略
    我们将采用周期性盘点库存策略(s, S)。
    根据商品的预测需求和价格确定每个商品的s和S值。
  3. 考虑库存成本
    考虑持有成本(基于商品价格和库存水平)和缺货成本(当需求不能被满足时)。
    目标是平衡成本和服务水平。
  4. 模型实现
    使用Python来实现这个模型。
    可以考虑使用库存管理理论,如经济订货量(EOQ)模型
    或者基于机器学习的预测模型。
    或者构建规划方程
  5. 模型测试与优化
    测试模型在不同参数下的表现。
    根据成本、库存水平和服务水平进行优化。
  6. 结果输出
    输出2023-05-16至2023-05-30期间的补货计划

结合了预测需求数据和商品价格来计算每个商品的补货点(s值)和目标库存水平(S值)。这里,s和S的计算基于简单的假设
需要考虑了持有成本和缺货成本,这些成本根据商品价格和设定的比率计算得出。
下一步
参数调整:根据具体需求和成本考虑,调整s和S的计算方法。
模型验证:测试模型以确保其准确性和有效性。
优化策略:可能需要进一步优化策略,以更好地适应实际情况。
#初步代码
import pandas as pd
import numpy as np

File paths

forecast_results_file_path = ‘结果表1-预测结果表.xlsx’
product_price_file_path = ‘商品价格数据.xlsx’

Load the forecast results data

forecast_results_data = pd.read_excel(forecast_results_file_path)

Load the product price data

product_price_data = pd.read_excel(product_price_file_path)

Constants and assumptions

initial_inventory = 5 # Initial inventory level for all products
lead_time = 3 # Lead time in days
review_period = 1 # Review period in days
holding_cost_rate = 0.01 # Holding cost rate (percentage of product price)
shortage_cost_rate = 0.02 # Shortage cost rate (percentage of product price)

Merging forecast data with price data

merged_data = forecast_results_data.merge(product_price_data, on=‘product_no’, how=‘left’)

Function to calculate s and S values for each product

def calculate_replenish_points(row):
forecast_demand = row[‘forecast_qty’]
price = row[‘price’]
holding_cost_per_unit = price * holding_cost_rate
shortage_cost_per_unit = price * shortage_cost_rate
return s, S

Apply the function to each row in the dataframe

merged_data[[‘s’, ‘S’]] = merged_data.apply(lambda row: calculate_replenish_points(row), axis=1, result_type=“expand”)

Display the updated dataframe

merged_data.head()

初步预测结果对可视化

在这里插入图片描述

预测数量分布图:这个直方图展示了预测数量的分布情况,并包含一个核密度估计(KDE)曲线,有助于理解预测数量的总体分布趋势。
预测数量箱线图:这个箱线图提供了预测数量的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),以及可能的异常值。
预测数量密度图:这个密度图显示了预测数量的概率密度分布,可以更详细地了解预测数量分布的形状。

这篇关于【思路代码详解】2023mathorcup大数据复赛B题妈妈杯高校数学建模挑战赛电商零售商家需求预测及库存优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471772

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空