一文读懂TTC碰撞时间算法

2023-12-08 21:20

本文主要是介绍一文读懂TTC碰撞时间算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在当今的自动驾驶车上,需要更先进和复杂的驾驶辅助系统。大多数车通过一个前向摄像头来实现如LDW(lane departure warning)、TSR(traffic sign recognition)、FCW(forward collision warning)等功能。由于应用环境的复杂性,FCW是一个相当具有挑战的任务,一种鲁邦、可靠的ttc估计方法将显得尤为重要。

TTC为自车与前车发生碰撞的时间,定义为自车与障碍物之间的距离除以相对速度。在单目系统中,测距和测速并不是一个简单的任务。而基于单目视觉的TTC估计是在不需要计算实际距离和速度的前提下,算得自车与前车的碰撞时间

TTC计算理论

在视频流中,在一个短暂的时间内,TTC可以通过目标的尺寸除以尺寸变化来计算。证明如下:

令Z为自车与目标的物理距离,\bigtriangleup X为目标物理宽度,D=x2-x1为目标在图像上的像素宽度。

根据相机投影模型 x=Xf/Z可得,

x1=X_1f/Z,         x2=X_2f/Z

目标实际的物理宽度有

\Delta X=X_1-X_2=(x1-x2)*Z/f=D*Z/f

由于在实际的物理环境中,目标的物理宽度是不变的,对物理宽度求导可得:

但是在实际应用场景,相对速度是实时变化的,那么图像中目标的尺寸D和尺寸变化率也是实时变化的,那么,准确地计算出目标的尺寸和尺寸变化率并不是一件容易的事情。为鲁邦、可靠的估算TTC,仅靠上述公式,算得的ttc是不稳定的。

《Time To Contact Estimation Using Interest Points》提供了一种简单、稳定的TTC估算方法。以下内容将围绕该文章介绍TTC的估算方式。

Time To Contact Estimation Using Interest Points

该方法的主要思想:

  • 利用目标关键点估计目标的尺寸变化S;
  • 然后利用S建立目标的匀速运动模型和加速运动模型;
  • 用扩展Kalman滤波跟踪模型参数;
  • 采用策略融合多种运动模型的计算结果。

在实际应用中,本人认为采用匀加速模型(CA)和匀速模型(CV)即可。

运动模型建立

利用相似三角形原理,可得:

w(t)=f*W/d_\theta (t),其中,d_\theta (t)为带参数的运动模型。

那么,在不同时刻,我们有:

\frac{w(t_1) }{w(t_2)}=\frac{d_\theta(t_2)}{d_\theta(t_1)}

t_1=0, t_2=-\bigtriangleup t, s_i=\frac{w(0)}{w(-\bigtriangleup t_i)}。假定已测得若干组s,

则有

假定运动模型为:

其中,

利用最小二乘拟合该2阶曲线,即可求得\tilde{a}\tilde{v}

计算尺寸变化S

\vec{x_i}^{'}\vec{x_i}为不同帧中的对应点(该对应点可通过关键点匹配或者LK光流算得,对于关键点计算,在本文中不做讨论。欢迎评论或者留言)。采用放射变换计算s。

利用最小二乘算法,可求得:

{\hat{s}}是s的有偏估计,目标尺寸w越小,估计误差越大。

多模型跟踪

采用扩展卡尔曼模型跟踪运动模型的参数,运动模型为CA模型和CV模型。再进行多模型的融合决策,得出最终的TTC。

(该论文中,作者没有采用IMM Kalman (Interactive Multi model kalman filter algorithm)对多个模型进行融合。)

(对于Kalman、扩展Kalman、IMM等模型,将在后续文章中更新,欢迎关注、评论和留言)

状态向量为:(见公式7)

对CA模型,一步预测方程为:

雅克比矩阵为:

对CV模型,一步预测方程为:

雅克比矩阵为:

采用上述方程,对CA模型和CV模型进行跟踪。

多模型融合决策

该论文中,作者并没有采用IMM模型进行融合。而是采用了一种简单的逻辑策略,对各个模型计算的TTC进行融合。

融合策略如下:

  • 计算观测值在各个模型中的似然估计p1和p2,估计原理戳here;

d_a(t)=0,可求得ttc的值,即公式7的根。

实验结果

这篇关于一文读懂TTC碰撞时间算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471356

相关文章

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

一文带你深入了解Python中的GeneratorExit异常处理

《一文带你深入了解Python中的GeneratorExit异常处理》GeneratorExit是Python内置的异常,当生成器或协程被强制关闭时,Python解释器会向其发送这个异常,下面我们来看... 目录GeneratorExit:协程世界的死亡通知书什么是GeneratorExit实际中的问题案例

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Python如何获取域名的SSL证书信息和到期时间

《Python如何获取域名的SSL证书信息和到期时间》在当今互联网时代,SSL证书的重要性不言而喻,它不仅为用户提供了安全的连接,还能提高网站的搜索引擎排名,那我们怎么才能通过Python获取域名的S... 目录了解SSL证书的基本概念使用python库来抓取SSL证书信息安装必要的库编写获取SSL证书信息

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

一文详解kafka开启kerberos认证的完整步骤

《一文详解kafka开启kerberos认证的完整步骤》这篇文章主要为大家详细介绍了kafka开启kerberos认证的完整步骤,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、kerberos安装部署二、准备机器三、Kerberos Server 安装1、配置krb5.con