友思特分享 | Neuro-T:零代码自动深度学习训练平台

2023-12-08 13:04

本文主要是介绍友思特分享 | Neuro-T:零代码自动深度学习训练平台,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

工业自动化、智能化浪潮涌进,视觉技术在其中扮演了至关重要的角色。在汽车、制造业、医药、芯片、食品等行业,基于视觉技术实现的缺陷检测具有非常大的需求。对于传统检测方法,目视检查方法能够有效检测非标、具有挑战性的缺陷,传统机器视觉方法具有稳定的速度及准确性,适合重复检测任务。这两种方法具有诸如检测精度、缺陷类型、技术人员成本等局限性。在这种背景下,融合深度学习的视觉检测方案有效地结合了两者的优势,满足了传统检测方法的需求。

为什么要选择友思特 Neuro-T?

图片

深度学习项目流程如上图所示。对于深度学习视觉检测方案:

(1) 高质量的训练数据对于创建高性能的深度学习模型至关重要;

(2) 创建高性能的深度学习模型需要丰富的专业知识。

完成一个深度学习视觉检测项目,需要有丰富经验的行业领域工程师和深度学习工程师。

友思特 Neuro-T为传统的深度学习视觉检测方案提供了“自动深度学习”的解决方案。Neuro-T 软件集成自动深度学习算法,结合自动标注功能,一键生成高性能视觉检测模型,无需AI领域专业知识即可创建深度学习视觉检测模型。

友思特 Neuro-T 平台介绍

友思特 Neuro-T 是一个用于深度学习视觉检测项目的一体化平台,可用于 项目规划→图像预处理→图像标注→模型训练→模型评估 一系列任务。Neuro-T提供了便捷的工具和友好的图形化界面,只需四个步骤即可创建一个深度学习模型:

01 文件页面

  • 第一步是在文件页面导入图像

  • 该页面还提供了如图像切片、图像增强等预处理功能

图片

02 数据页面

  • 第二步从选择模型类型开始。

  • 通过标注,用户可以指示模型要检测的目标

图片

03 训练页面

  • 第三步是验证数据集并启动训练过程

  • 自动深度学习算法使得一键即可完成训练设置

图片

04 结果页面

  • 第四步是评估模型的性能

  • 模型可以基于四个不同的值(Accuracy, Precision, Recall, F1 Score)进行评估

图片

友思特 Neuro-T 的优势特性

自动深度学习算法

深度学习算法分为:自动深度学习算法和现有算法。自动深度学习算法使得每个人都可以轻松地创建高性能的深度学习模型。

自动标注

在大数据量深度学习任务中,标注任务需要耗费大量时间。Neuro-T通过自动标注显著缩短项目周期时间,基于用户已标注的数据来保证后续标注的一致性。

本地云环境

用户可以在安全的环境中与团队成员协作。Neuro-T 的服务端-客户端架构只允许团队成员共享工作区。

流程图和推理中心

流程图可以链接多个不同类型的模型来简化项目设计,如分类+检测模型组合。推理中心可以评估项目流程图的推理时间和准确率,从而以更少的尝试和错误创建最佳模型。

快速再训练

如果出现新的缺陷类型或设计修改,需要重新进行训练,且存在时间延迟和效果下降的问题。Neuro-T 通过自动深度学习和平衡数据,以较短的训练时间实现较高的模型精度。

友思特 Neuro-T 的功能

分类(Classification)

分类正常类型与缺陷类型

图片

分割(Segmentation)

通过分析像素识别特点形状缺陷和位置

图片

目标检测(Object Detection)

识别物体类别、数量和位置

图片

异常检测(Anomaly Detection)

通过仅在正常图像上训练来识别异常图像

图片

字符识别(OCR)

光学字符识别

图片

旋转(Rotation)

旋转图像至正确方位

图片

友思特 Neuro-T 应用案例

1. 汽车用钢材

检测要点:

(1)汽车表面缺陷检测和装配完成检测。

(2)VIN编号识别。

(3)材料表面涂层区域的识别。

(4)无损检测、焊接/卷材/板材检测。

2. 螺栓/螺母组件检测

图片

图片

3. VIN编号识别

图片

图片

图片

4. 其他汽车制造业应用领域

组件检测、装配检测、天窗粘合剂检测

图片

表面裂纹检测、焊接缺陷检测、无损检测

图片

更多方案信息,请关注友思特官网:友思特 - 领先的机器视觉与光电检测解决方案提供商 (viewsitec.com)

这篇关于友思特分享 | Neuro-T:零代码自动深度学习训练平台的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469948

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建