概率测度理论方法(第 2 部分)

2023-12-08 11:04

本文主要是介绍概率测度理论方法(第 2 部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

        欢迎回到这个三部曲的第二部分!在第一部分中,我们为测度论概率奠定了基础。我们探索了测量和可测量空间的概念,并使用这些概念定义了概率空间。在本文中,我们使用测度论来理解随机变量。

        作为一个小回顾,在第一部分中,我们看到概率空间可以使用测度理论按以下方式定义:

        现在,我们将考虑范围扩展到随机变量。在学校中,通常引入随机变量作为其值是随机的变量。例如,掷骰子的结果可以通过随机变量X建模,其值随机为 1、2、3、4、5 或 6。虽然这个定义适用于概率的基本应用,但它是一点也不严谨,并且错过了一些非常令人满意的直觉。

二、可测量的功能

        因此,我们现在转向测度理论来定义随机变量。为了做到这一点,我们必须定义一个可测量的函数:

        让我们分解一下这个定义。首先,与任何其他函数一样,可测量函数将一个集合中的元素映射到另一个集合。但这还不是全部,这个函数还有更多维度。函数f的域和余域都是分别配备有 σ 代数 ℱ 和 ℳ 的可测空间。而且,最重要的是,可测量函数可以将测量从域的可测量空间“传输”到共域的可测量空间。这是什么意思?假设可测空间(F, ℱ ) 的测度为µ。然后,我们可以应用f来获得可测空间 (M, ℳ) 的测度如何?出色地,

        而且,我们已经定义了一个可测函数,f⁻1( A)肯定属于F的 σ 代数,因此可以通过测度 µ 来指定。

图片来源:马修·伯恩斯坦

        该图的 A 部分描绘了两个可测量空间(F,ℱ)(H,ℋ)。σ 代数由黑线概述的集合生成。B 部分描述了将F映射到H的有效可测量函数f。即,左边的集合是域,右边的集合是共域。颜色说明fFH的子集之间的图像关系。例如,F中的蓝色集合的图像是H中的蓝色集合。我们看到的每个成员都有一个可测量的原像。C 部分描述了一个不可测量的函数。该函数是不可测量的,因为中的蓝色集具有不属于 ℱ 成员的原像

三、随机变量

        现在我们已经定义了可测量函数,我们可以开始处理随机变量。使用测度论,我们按以下方式定义随机变量:

        这说明了什么?简而言之,随机变量是将概率空间中的元素映射到可测量空间的函数。如果您还记得的话,集合 Ω 称为样本空间,代表所有可能的未来。随机变量X简单地将每个可想象的未来映射到某个集合F中的元素。集合F是X可以取的所有可能值的集合。随机变量是概率空间中的可测量函数,因为它允许我们将概率测量从概率空间“传输”到我们正在考虑的X结果集。

四、离散随机变量

        为了说明这一点,我们考虑抛硬币。令Y为随机变量,代表抛掷一枚公平硬币的结果。然后,集合 Ω 代表所有可能的未来——硬币在空中旋转、着陆、弹跳等的无限种方式。随机变量将每个未来映射到可测量的空间(H, ℋ),其中H:={ 0,1}。在这里,我们将反面编码为 0,将正面编码为 1。例如,硬币可以有两种方式ab,其中硬币在空中翻转并落地为正面。那么X(a)=1并且X(b)=1。

        H 上的 σ 代数表示我们希望为其分配概率的所有结果组:

        这里需要注意的是,ℋ中的每个元素在原始概率空间中的X下都有一个原像,即该原像是E的成员。因此,我们可以根据测度为中的每个集合分配一个概率根据P得到其原像:

用熟悉的表示法来说,这很简单:P(X=1)

五、连续随机变量

        现在,我们转向连续随机变量。这有一个稍微不同的方法,因为,很明显,如果我们采用与离散随机变量相同的方法,我们将遇到数学矛盾。

        连续随机变量还将集合 Ω 中的元素映射到集合H。但在这种情况下,H是所有实数的集合。那是,

        现在的问题是,我们不能像对待离散随机变量那样拥有 σ 代数。根据可测函数的定义,我们需要在 ℝ 上构造 σ-代数ℋ ,使得中每个元素的原像都是E中的一个事件。但是,我们不能为 ℝ 中的每个元素分配非零概率因为集合的基数是无穷大,即它是不可数无限集合。任何为集合中的每个元素分配概率的尝试都会导致 σ-代数的概率为无穷大——这是一个矛盾,因为任何事件的概率都不能大于 1。

        为了避免这个问题,我们转向Borel σ-代数。这本身就是一个广泛深入的话题,需要大量的拓扑知识,因此我们不会在本文中深入探讨。但直观上,Borel σ 代数处理的是实线上的所有区间,而不是实线本身。也就是说,实线上的区间(x,y)是 ℋ 的一个元素,因此在X下具有可测量的原像。并且,我们分配所有长度为零的区间,即仅包含一个实数的单例集,概率为0。也就是说,分配给任何特定实数的概率为零。然而,分配给实数区间的概率可以是非零的。

        现在,我们如何计算 ℋ 中区间原像的测度?大多数情况下,这是通过使用概率密度函数来实现的——概率密度函数是概率中熟悉的概念。这是通过以下方式定义的:

        通常,LHS 表示为P(a < X < b)。

        至此,我们现在统一了离散随机变量和连续随机变量的概念。希望这为概率论这个反直觉的怪物提供了一些令人满意的直觉。而且,我应该说,测度论不仅仅用于统一这些概念。事实上,通过以这种方式定义随机变量,我们现在已经配备了处理非数字结果(即向量、集合和函数)的随机变量所需的机制。

        本三部曲的最后一篇文章将探讨如何使用测度论来理解数学期望。

        感谢您的阅读,祝您度过愉快的一天!

这篇关于概率测度理论方法(第 2 部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469616

相关文章

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot