基于轻量级MnasNet模型开发构建40种常见中草药图像识别系统

本文主要是介绍基于轻量级MnasNet模型开发构建40种常见中草药图像识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文本是前文的后续:

《python基于轻量级GhostNet模型开发构建23种常见中草药图像识别系统》

前文主要是在小批量小种类数据集上尝试开发构建基于轻量级CNN模型的中草药图像识别系统,本文的初衷是想要构建一个大类别大数据集的基础,但是无奈发现中草药的种类达到了千余种,且数据采集和人工处理的工作量极大,无奈只好暂时搁置,等待空闲时间再继续投入,这里是爬取构建了40种常见的中草药数据集来开发构建基于MnasNet的识别系统,首先看下实例效果:

MnasNet(Mobile Neural Architecture Search Net)是一种基于神经网络架构搜索(Neural Architecture Search,NAS)的轻量级卷积神经网络模型。通过自动化神经网络架构搜索的方式,找到一种适用于移动设备的高效网络结构。它采用强化学习算法和多目标优化策略来搜索最佳的网络架构。通过对网络的不同部分进行搜索和组合,MnasNet能够在保持较小模型规模的同时,提供较高的性能和准确性。

在设计一个模型搜索算法时,有三个最重要的点:
1、优化目标:决定了搜索出来的网络框架的性能和效率;
2、搜索空间:决定了网络是由哪些基本模块组成的;
3、优化策略:决定了强化学习的收敛速度。

构建原理
MnasNet模型的算法构建原理是通过使用弱连接搜索算法和自动化网络设计方法来构建高效的卷积神经网络模型。MNasNet的搜索空间很大程度上参考了MobileNet v2,通过强化学习的方式得到了超越其它模型搜索算法和其参照的MobileNet v2算法,从中可以看出人工设计和强化学习互相配合应该是一个更好的发展方向。MNasNet中提出的层次化搜索空间可以生成每个网络块都不通的网络结构,这对提升网络的表现也是有很大帮助的,但这点也得益于参考MobileNet v2设计搜索空间后大幅降低的搜索难度。

在弱连接搜索算法中,MnasNet使用了一种基于弱连接的搜索策略,通过在网络的每个位置引入弱连接,然后通过选择性地增加和删除连接来搜索网络结构。这种方法可以显著减少搜索空间并提高搜索效率。

在自动化网络设计方法中,MnasNet使用了一种自动化的网络设计方法来优化网络结构。该方法通过定义一组可行的操作和权重空间,并使用强化学习算法来搜索最优的网络结构。这种方法可以自动地学习网络结构,并在保持高性能的同时减少模型的大小和计算资源的使用。

优点
高性能:MnasNet通过使用弱连接搜索算法和自动化网络设计方法,能够搜索和设计出高性能的卷积神经网络。这些网络在多个图像分类和目标检测任务上展示了较好的性能。

轻量化:MnasNet在网络设计过程中考虑了模型的大小和计算资源的使用。通过自动化网络设计方法,MnasNet能够减少模型的大小和计算量,从而在保持高性能的同时实现轻量化。

可扩展性:MnasNet的自动化网络设计方法具有较强的可扩展性。它可以根据不同的任务和数据集进行自动化的网络设计,并能够适应不同的计算资源限制和应用场景需求。

缺点
训练时间较长:由于MnasNet使用了自动化网络设计方法,需要在大规模的搜索空间中进行搜索和训练,因此训练时间较长。

部署和推理速度较慢:由于MnasNet的网络结构相对较复杂,导致在部署和推理过程中需要更多的计算资源。特别是在计算资源有限的设备上,可能会影响模型的部署和实时推理效果。

MnasNet模型通过弱连接搜索算法和自动化网络设计方法构建了高性能和轻量化的模型。然而,它的训练时间较长,部署和推理速度较慢,需要在实际应用中综合考虑这些因素。

MnasNet核心实现如下所示:

class MNASNet(torch.nn.Module):def __init__(self,alpha: float,num_classes: int = 1000,dropout: float = 0.2) -> None:super(MNASNet, self).__init__()assert alpha > 0.0self.alpha = alphaself.num_classes = num_classesdepths = _get_depths(alpha)layers = [nn.Conv2d(3, depths[0], 3, padding=1, stride=2, bias=False),nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(depths[0], depths[0], 3, padding=1, stride=1,groups=depths[0], bias=False),nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(depths[0], depths[1], 1, padding=0, stride=1, bias=False),nn.BatchNorm2d(depths[1], momentum=_BN_MOMENTUM),_stack(depths[1], depths[2], 3, 2, 3, 3, _BN_MOMENTUM),_stack(depths[2], depths[3], 5, 2, 3, 3, _BN_MOMENTUM),_stack(depths[3], depths[4], 5, 2, 6, 3, _BN_MOMENTUM),_stack(depths[4], depths[5], 3, 1, 6, 2, _BN_MOMENTUM),_stack(depths[5], depths[6], 5, 2, 6, 4, _BN_MOMENTUM),_stack(depths[6], depths[7], 3, 1, 6, 1, _BN_MOMENTUM),nn.Conv2d(depths[7], 1280, 1, padding=0, stride=1, bias=False),nn.BatchNorm2d(1280, momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),]self.layers = nn.Sequential(*layers)self.classifier = nn.Sequential(nn.Dropout(p=dropout, inplace=True),nn.Linear(1280, num_classes))self._initialize_weights()def forward(self, x: Tensor, need_fea=False) -> Tensor:if need_fea:features, features_fc = self.forward_features(x, need_fea)x = self.classifier(features_fc)return features, features_fc, xelse:x = self.forward_features(x)x = self.classifier(x)return xdef forward_features(self, x, need_fea=False):if need_fea:input_size = x.size(2)scale = [4, 8, 16, 32]features = [None, None, None, None]for idx, layer in enumerate(self.layers):x = layer(x)if input_size // x.size(2) in scale:features[scale.index(input_size // x.size(2))] = xreturn features, x.mean([2, 3])else:x = self.layers(x)x = x.mean([2, 3])return xdef _initialize_weights(self) -> None:for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out",nonlinearity="relu")if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, nn.BatchNorm2d):nn.init.ones_(m.weight)nn.init.zeros_(m.bias)elif isinstance(m, nn.Linear):nn.init.kaiming_uniform_(m.weight, mode="fan_out",nonlinearity="sigmoid")nn.init.zeros_(m.bias)def cam_layer(self):return self.layers[-1]def _load_from_state_dict(self, state_dict: Dict, prefix: str, local_metadata: Dict, strict: bool,missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str]) -> None:version = local_metadata.get("version", None)assert version in [1, 2]if version == 1 and not self.alpha == 1.0:depths = _get_depths(self.alpha)v1_stem = [nn.Conv2d(3, 32, 3, padding=1, stride=2, bias=False),nn.BatchNorm2d(32, momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(32, 32, 3, padding=1, stride=1, groups=32,bias=False),nn.BatchNorm2d(32, momentum=_BN_MOMENTUM),nn.ReLU(inplace=True),nn.Conv2d(32, 16, 1, padding=0, stride=1, bias=False),nn.BatchNorm2d(16, momentum=_BN_MOMENTUM),_stack(16, depths[2], 3, 2, 3, 3, _BN_MOMENTUM),]for idx, layer in enumerate(v1_stem):self.layers[idx] = layersuper(MNASNet, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys,unexpected_keys, error_msgs)

本文中提出的数据集源自自主构建处理,共包含以下类目,如下所示:

三七
人参
佛手片
元胡
厚朴
天南星
天麻
安息香
川芎
巴戟天
当归
木香
朱砂
杜仲
枸杞
桔梗
熊胆
牛黄
玉果
瓜蒌
甘草
生地
白前
白术
白芍
羚羊角
肉苁蓉
苏合香
苦参
茯苓
荜拨
菊花
蔓荆子
贝母
连召
银花
香附
麦冬
黄芪
黄连

后续会再此基础上进行扩充类目。

数据实例如下所示:

数据分布可视化如下所示:

整体训练过程loss如下所示:

准确率曲线如下所示:

混淆矩阵如下所示:

我们对每个类别进行了单独的指标评测,详情如下所示:

+--------+-----------+---------+----------+---------+----------+
|  三七  |  0.70968  | 0.73333 | 0.72131  | 0.71376 | 0.73333  |
|  人参  |  0.89286  | 0.86207 | 0.87719  | 0.87409 | 0.86207  |
| 佛手片 |  0.83871  | 0.89655 | 0.86667  | 0.86312 | 0.89655  |
|  元胡  |  0.66667  | 0.68966 | 0.67797  | 0.66954 | 0.68966  |
|  厚朴  |  0.56667  | 0.60714 | 0.58621  | 0.57557 | 0.60714  |
| 天南星 |  0.70588  | 0.82759 | 0.76190  | 0.75528 | 0.82759  |
|  天麻  |  0.80000  | 0.85714 | 0.82759  | 0.82316 | 0.85714  |
| 安息香 |  0.63636  | 0.70000 | 0.66667  | 0.65735 | 0.70000  |
|  川芎  |  0.57576  | 0.67857 | 0.62295  | 0.61280 | 0.67857  |
| 巴戟天 |  0.87097  | 0.93103 | 0.90000  | 0.89734 | 0.93103  |
|  当归  |  0.58974  | 0.79310 | 0.67647  | 0.66688 | 0.79310  |
|  木香  |  0.64286  | 0.64286 | 0.64286  | 0.63399 | 0.64286  |
|  朱砂  |  0.71875  | 0.79310 | 0.75410  | 0.74745 | 0.79310  |
|  杜仲  |  0.77273  | 0.58621 | 0.66667  | 0.65929 | 0.58621  |
|  枸杞  |  0.96552  | 0.96552 | 0.96552  | 0.96463 | 0.96552  |
|  桔梗  |  0.75000  | 0.62069 | 0.67925  | 0.67179 | 0.62069  |
|  熊胆  |  0.61538  | 0.55172 | 0.58182  | 0.57166 | 0.55172  |
|  牛黄  |  0.84848  | 0.96552 | 0.90323  | 0.90057 | 0.96552  |
|  玉果  |  0.76667  | 0.76667 | 0.76667  | 0.76045 | 0.76667  |
|  瓜蒌  |  0.73333  | 0.75862 | 0.74576  | 0.73911 | 0.75862  |
|  甘草  |  0.77778  | 0.72414 | 0.75000  | 0.74380 | 0.72414  |
|  生地  |  0.53846  | 0.50000 | 0.51852  | 0.50702 | 0.50000  |
|  白前  |  0.83333  | 0.86207 | 0.84746  | 0.84346 | 0.86207  |
|  白术  |  0.78571  | 0.75862 | 0.77193  | 0.76617 | 0.75862  |
|  白芍  |  0.86667  | 0.89655 | 0.88136  | 0.87825 | 0.89655  |
| 羚羊角 |  0.76000  | 0.65517 | 0.70370  | 0.69666 | 0.65517  |
| 肉苁蓉 |  0.52174  | 0.42857 | 0.47059  | 0.45876 | 0.42857  |
| 苏合香 |  0.60000  | 0.41379 | 0.48980  | 0.47913 | 0.41379  |
|  苦参  |  0.82759  | 0.82759 | 0.82759  | 0.82315 | 0.82759  |
|  茯苓  |  0.71429  | 0.68966 | 0.70175  | 0.69422 | 0.68966  |
|  荜拨  |  0.96552  | 0.96552 | 0.96552  | 0.96463 | 0.96552  |
|  菊花  |  0.89286  | 0.86207 | 0.87719  | 0.87409 | 0.86207  |
| 蔓荆子 |  0.87879  | 1.00000 | 0.93548  | 0.93371 | 1.00000  |
|  贝母  |  0.87500  | 0.96552 | 0.91803  | 0.91582 | 0.96552  |
|  连召  |  0.91304  | 0.72414 | 0.80769  | 0.80333 | 0.72414  |
|  银花  |  0.87097  | 0.93103 | 0.90000  | 0.89734 | 0.93103  |
|  香附  |  0.57576  | 0.65517 | 0.61290  | 0.60228 | 0.65517  |
|  麦冬  |  1.00000  | 0.96552 | 0.98246  | 0.98201 | 0.96552  |
|  黄芪  |  0.86364  | 0.67857 | 0.76000  | 0.75477 | 0.67857  |
|  黄连  |  0.66667  | 0.62069 | 0.64286  | 0.63400 | 0.62069  |
+--------+-----------+---------+----------+---------+----------+

部分类别精度不高,整体来看还是相对稳定的。

这篇关于基于轻量级MnasNet模型开发构建40种常见中草药图像识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469391

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应