目标检测——SPPNet算法解读

2023-12-07 21:15

本文主要是介绍目标检测——SPPNet算法解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
链接:https://arxiv.org/abs/1406.4729

目录

  • 1、算法概述
  • 2、Deep Networks with Spatial Pyramid Pooling
    • 2.1 SPP Layer
    • 2.2 网络训练
  • 3、实验结果
    • 3.1 分类
    • 3.2 检测
  • 4、创新点和不足

1、算法概述

之前的工作,神经网络都要求固定尺寸的输入,比如:224x224,这就限制了输入图像的宽高比,当对于其他任意尺寸图像时,基本都是通过裁剪或直接拉伸的方式变换到固定尺寸。但是裁剪有可能不能完全包含目标,直接拉伸也会造成目标的形变及失真,这都会造成识别精度下降。
在这里插入图片描述
为什么卷积神经网络需要固定尺寸的输入?CNN由两部分组成:卷积层和全连接层,实际上卷积层不需要固定尺寸的输入,它可以对任意尺寸的图像生成任意尺寸的特征图;而全连接层根据其定义来看才需要固定尺寸的输入。全连接层通常在CNN的深层阶段,所以本文作者提出空间金字塔池化(SPP, Spatial Pyramid Pooling)层用于固定CNN中最后一层卷积层的输出,使得全连接层的输入得到统一。这一操作使得CNN可以接受任意尺寸的输入,不必经过裁剪(crop)和扭曲拉伸(warp)。在目标检测方面,加入这一操作的SPP-Net比R-CNN快24到102倍,全过程下来速度为0.5s/image。
SPP的优势有:
1、针对不同尺寸的输入可以得到相同维度的输出,而siding window pooling 做不到;
2、SPP使用multi-level spatial bins, 而siding window pooling采用的单一的窗口,multi-level对目标变形非常鲁棒;
3、由于输入尺寸的可变性,SPP可以提取不同尺度的特征。
4、SPP-Net能使得我们在训练中使用多尺度训练,避免过拟合,使得最终的精度相比固定尺寸训练有所提升。

2、Deep Networks with Spatial Pyramid Pooling

2.1 SPP Layer

作者首先可视化了网络特征图,表明了特征图不仅反映了相应的强度和涉及到它们的空间位置。卷积层可以接受任意大小的输入并输出任意尺寸的特征图,但分类器(SVM/softmax)或者全连接层只能接受固定尺寸的输入。
在这里插入图片描述
为了让CNN适应任意大小的图像,作者将最后一个池化层(例如,在最后一个卷积层之后的pool5层)替换为空间金字塔池化层。如上图所示,空间金字塔池化的输出是kM维向量,桶(bins)的数量记为M,k是最后一个卷积层的输出特征图数量,图中k为256。每个特征图的尺寸为axa,被切分为nxn的bins,那么采用窗口为win=ceil(a/n)和步长为str=floor(a/n)的max-pooling。最后将所有的特征级联起来(固定维度kM)作为全连接层的输入。这样就保证了无论输入图像的尺寸,输入全连接层的输入都有同样的大小。
网络处理流程如下:
在这里插入图片描述

2.2 网络训练

单尺度训练,固定裁剪输入图像为224x224,最后一层卷积层输出特征图大小为13x13,设置三个级别的空间金字塔池化操作,SPP设置如下:
在这里插入图片描述
多尺度训练,采用两个尺度训练,180x180,224x224;180尺寸的图片是224尺寸的直接resize得到,而不是通过裁剪得到,所以两种尺度的区域只在分辨率上不同,而在内容/布局上没有区别。对于180x180的输入图像,最后一层卷积层输出特征图大小为10x10,通过SPP层,180x180的输入大小和224x224的输入大小得到相同维度的全连接层输入。
以上单/多尺度训练主要应用于训练阶段,在测试推理阶段,SPPNet可以接受任意大小的输入图像。

3、实验结果

3.1 分类

数据集采用ImageNet 2012,输入图片固定为224x224,Baseline model的结构如下
在这里插入图片描述
将网络最后一个池化层替换成SPP层后,对应的结果分别为:
在这里插入图片描述
可见多尺度训练对模型也有提升
ILSVRC2014分类竞赛的结果如下,SPP-Net取到第三名的结果,第一名是GoogLeNet,第二名VGG
在这里插入图片描述

3.2 检测

SPP-Net也可以用于目标检测。相较于R-CNN的2000次提取特征,SPP-Net只从整个图像中提取一次特征映射(可能在多个尺度上)。然后对特征图上的每个候选框应用空间金字塔池操作,该候选框对应的特征通过SPP操作将变成固定长度的向量,如下图所示。由于只应用一次卷积操作,所以我们的方法可以运行速度提高几个数量级。
在这里插入图片描述
实验设置:相对于R-CNN,SPP-Net还是用selective search提出区域候选框(测试阶段2000个),SPP-Net的backbone部分采用ZF-5,SPP层采用4级空间金字塔(1x1,2x2,3x3,6x6,共50个bins),这样每个候选框区域这就会生成12800维(256x50)的特征向量用于全连接层的输入。后面训练每个类别的SVM分类器也是用这个12800维的特征。训练SVM的样本设置方案和R-CNN一致,也采用负样本难度挖掘技术。
在这里插入图片描述
因为SPP-Net和R-CNN采用的方式差不多,只是SPP-Net将R-CNN的2000次提取特征的过程集中到一次完成,所以它们最终的mAP区别不大,但SPP-Net的速度比R-CNN的快非常多。

4、创新点和不足

  • 创新点:
    1、针对不同尺寸的输入可以得到相同维度的输出,实现了多尺度训练的可能,能让网络见到多尺度图片,增加鲁棒性。
    2、首次提出单尺度/多尺度交替训练。
    3、改进R-CNN的提取特征方式,合并2000次提取为一次提取,大大提升了速度。
  • 不足:
    1、还是没有改进候选框区域生成;
    2、特征提取、SVM分类、边框回归这三个阶段是独立的,需分别进行训练和推理,效率较低。

这篇关于目标检测——SPPNet算法解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/467388

相关文章

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X