视频相似度对比 python opencv sift flann

2023-12-07 11:36

本文主要是介绍视频相似度对比 python opencv sift flann,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 提取SIFT特征的代码,返回关键点kp及特征描述符des

def SIFT(frame):# 创建SIFT特征提取器sift = cv2.xfeatures2d.SIFT_create()# 提取SIFT特征kp, des = sift.detectAndCompute(frame, None)return kp, des

这行代码是使用SIFT(Scale-Invariant Feature Transform)算法在图像中检测关键点并计算对应的特征描述符。

在这行代码中,sift是一个SIFT特征提取器的实例,detectAndCompute是它的一个方法,用于在给定的图像中检测关键点并计算特征描述符。

这个方法有两个参数:第一个参数是输入的图像,第二个参数是一个掩码,用于指定在哪些地方检测关键点。在这个例子中,我们没有使用掩码,所以第二个参数是None

这个方法返回两个值:kpdes

  • kp是一个列表,包含了在图像中检测到的所有关键点。每个关键点是一个KeyPoint对象,包含了关键点的位置、大小、角度、响应度等信息。

  • des是一个NumPy数组,包含了每个关键点的特征描述符。每个特征描述符是一个128维的向量,可以用于比较不同关键点(或来自不同图像的关键点)的相似性。

总的来说,这行代码的作用就是使用SIFT算法提取图像的关键点和特征描述符,这些关键点和特征描述符可以用于图像匹配、物体检测、图像识别等任务。


特征描述匹配算法

FlannBasedMatcher 是 OpenCV 中的一个特征匹配方法,它使用了近似最近邻搜索算法(Approximate Nearest Neighbors,简称 FLANN)来寻找特征之间的匹配。这种方法的主要优点是它在大规模数据集上的性能非常好,尤其是在处理高维特征(例如 SIFT 或 SURF)时。

FLANN 是一种优化的最近邻搜索算法,它可以在高维空间中快速找到查询点的最近邻。传统的最近邻搜索算法(例如暴力搜索)在高维空间中的性能往往很差,因为它们需要对每一个可能的匹配进行计算,这在处理大规模数据集时会变得非常慢。FLANN 通过使用一种叫做 k-d 树的数据结构,以及一种叫做优先级搜索的策略,来大大加快搜索速度。

FLANN 的另一个优点是它可以自动选择最优的搜索算法和参数,这使得它可以在各种不同的数据集和特征类型上都有很好的性能。然而,这也意味着 FLANN 可能需要一些时间来调整这些参数,因此在小规模数据集上,FLANN 可能不如其他更简单的方法(例如暴力搜索或基于哈希的方法)快。

总的来说,FlannBasedMatcher 的主要优势是它在处理大规模、高维特征数据集时的性能和效率。然而,这也意味着它可能不适合所有的应用场景,尤其是在数据集较小或特征维度较低的情况下。

# 近似匹配
# 近似最近邻搜索算法来找到最佳匹配
def FlannMatcher(des1, des2):# 创建FLANN匹配器FLANN_INDEX_KDTREE = 1index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)  # KD树索引 树的数量5search_params = dict(checks=50)  # 回溯查找的次数flann = cv2.FlannBasedMatcher(index_params, search_params)# 使用FlannBasedMatcher比较特征描述符matches = flann.knnMatch(des1, des2, k=2)# 应用比例测试(ratio test)来选择好的匹配good_matches = []for m, n in matches:if m.distance < 0.7 * n.distance:good_matches.append([m])return good_matches

根据视频流取帧进行特征对比
def process(path1, path2):# 读取视频cap1 = cv2.VideoCapture(path1)cap2 = cv2.VideoCapture(path2)index = 0# matches_over_time 根据时序得到特征匹配结果# scores 记录每个匹配的得分情况 根据 最佳匹配/提取特征数 计算matches_over_time, scores = [], []while True:index = index + 1# 读取第一帧ret1, frame1 = cap1.read()ret2, frame2 = cap2.read()if not ret1:breakif not ret2:breakif index % 25 != 0:  # 每秒一帧进行采样continue# 如果成功读取帧if ret1 and ret2:kp1, des1 = SIFT(frame1)kp2, des2 = SIFT(frame2)good_matches = FlannMatcher(des1, des2)matches_over_time.append(good_matches)# 计算得分score = len(good_matches) / min(des1.shape[0], des2.shape[0])scores.append(score)# 释放资源cap1.release()cap2.release()return matches_over_time, scores

# 主函数调用
if __name__ == '__main__':path1 = 'video_base.mp4'path2 = 'video_origin.mp4't1 = int(time.time() * 1000)matches, scores = process(path1, path2)t2 = int(time.time() * 1000)print(f"用时 {(t2-t1)/1000.0}s")total_score = sum(scores) / len(scores)print(f"相似度得分 {round(total_score, 7)}")# cv2.destroyAllWindows()

这篇关于视频相似度对比 python opencv sift flann的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465710

相关文章

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t