Self-supervised Graph Learning for Recommendation 详解

2023-12-07 09:36

本文主要是介绍Self-supervised Graph Learning for Recommendation 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

摘要

引言

预备知识

方法

        3.1 图结构数据增强

        3.2 对比学习

        3.3 多任务学习

        3.4 理论分析


摘要

        基于用户-物品图的推荐表示学习已经从使用单一 ID 或交互历史发展到利用高阶邻居。这导致了图卷积网络(GCNs)在推荐方面的成功,如 PinSage 和 LightGCN。尽管具有有效性,但我们认为它们存在两个局限性:(1)高阶节点对表示学习的影响更大,使低阶(长尾)项目的推荐恶化;(2)由于邻域聚集方案进一步扩大了观测边缘的影响,表征容易受到噪声相互作用的影响。

        在这项工作中,我们探索了用户项图的自监督学习,以提高GCNs推荐的准确性和鲁棒性。其思想是用一个辅助的自监督任务来补充经典的推荐监督任务,通过自我区分来加强节点表示学习。具体来说,我们生成一个节点的多个视图,最大限度地提高同一节点的不同视图与其他节点的一致性。我们设计了三个操作符来生成视图——节点丢弃、边丢弃和随机游走——它们以不同的方式改变图的结构。我们将这种新的学习范式称为自监督图学习(SGL),并在最先进的LightGCN模型上实现它。通过理论分析,我们发现SGL具有自动挖掘难负样本的能力。在三个基准数据集上的实证研究证明了SGL的有效性,它提高了推荐的准确性,特别是在长尾项目上,以及对交互噪声的鲁棒性。我们的实现可以在https://github.com/wujcan/SGL上获得。

        总结:使用节点丢弃、边丢弃和随机游走三种策略改变图结构,使用辅助的自监督任务训练以增强节点表示,进而增强推荐效果。最终表明,该方法在长尾项目上,以及应对交互噪声上,有良好的表现。

引言

        基于用户-物品二部图推荐的表征表示学习已经从使用单一ID或交互历史演变到利用高阶邻居学习。基于这个思想,图卷积网络(graph convolution networks,GCNs)在推荐系统中取得了巨大成功。例如PinSage,LightGCN。尽管基于GCN的方法取到了不错的效果,但我们认为这些方法仍然受到了一些限制:

  • 监督信号稀疏(数据稀疏):目前大多数推荐学习任务都是基于监督学习的范式,其中监督信号一般指用户和物品的交互数据。然而这些交互数据通常来说是异常稀疏的,不足以学习高质量的表征。
  • 倾斜的数据分布(幂律分布):推荐系统的交互数据通常呈现幂律分布,其中长尾部分low-degree的物品节点缺乏监督信号。然而,high-degree的物品节点在邻居聚合和监督学习损失中占据了主导地位,对表征学习影响更大。因此,基于GCNs的方法倾斜于high-degree物品节点,牺牲了low-degree物品推荐的性能。
  • 交互噪音:用户提供的交互大多数是隐式的(clicks,views),而不是显式的(ratings,likes,dislikes)。因此,收集到的交互通常包含噪声,如用户误点击了一个物品。而GCNs中的邻居聚合操作则会加大这些交互噪音的影响,使得模型训练更容易受到交互噪音的影响。

        本文意在探索自监督学习(Self-supervised Learning, SSL)在用户-物品二部图上的应用,辅助推荐模型训练学习,应用self-discrimination来学习更加鲁棒的节点表征。具体来说,通过基于图结构的数据增强来生成一个节点的多个视图,最大化同一节点不同视图间(正样本对)的一致性(agreement)以及最小化不同节点视图间(负样本对)的一致性。本文设计了三张数据增强操作 —— node dropout, edge dropout, and random walk,并将这种新的学习范式称为Self-supervised Graph Learning(SGL)自监督图学习。下面章节将会具体介绍SGL。

        总结:在该段提出了使用GCN来做推荐的三个问题,分别是数据稀疏问题、长尾问题、交互噪音影响节点表示问题,并提出了解决策略。

预备知识

总结:该部分讲了 GCN 如何用在推荐上,如何学习节点的表示。以及讲解了监督学习的 loss 使用的是 BPR loss。

方法

        本节将定义自监督图学习(Self-supervise Graph Learning, SGL)范式,作为监督学习任务的补充,实验证明非常有效。图1展示了SGL的流程,简单来说,自监督学习任务从输入数据之间的关联构建监督信号。

        下面,我将介绍如何对图结构进行数据增强生成多个视图,然后基于生成的表征进行对比学习来建立自监督学习(Self-supervised Learning, SSL)任务,之后SSL与基于GCN的方法结合进行多任务学习,随后,我将从梯度的角度对SSL进行理论分析,解析SSL与难负样本挖掘的关联,最后我将简单分析一下模型时间复杂度。

        3.1 图结构数据增强

        使用节点丢失(对节点有概率的丢失)、边丢失(对边有概率的丢失)和随机游走

        3.2 对比学习

    

        总结:对比学习的学习目标是将同一节点不同视图学习一致性,不同节点不同视图强化差异性。

        3.3 多任务学习

        

        3.4 理论分析

        为什么 SGL 的效果好?

        因为 SGL 具有挖掘难负样本的能力,难负样本对梯度下降进行了有效的指导。

        

        实验(待补充)

        结论(待补充)

这篇关于Self-supervised Graph Learning for Recommendation 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465363

相关文章

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核