Filament引擎分析--command抽象设备API

2023-12-07 04:15

本文主要是介绍Filament引擎分析--command抽象设备API,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言

Filament中使用了FrameGraph来管理渲染管线,需要准备两点:

  • 设备接口抽象:设备API抽象为Command
  • 资源抽象:使用虚拟资源,在实际用到时再创建,方便剔除无用资源

下面就围绕Filament中设备API抽象为Command代码部分做一个解读:

2. 代码分析

先贴一段创建顶点缓冲的接口调用堆栈:

[Inlined] filament::backend::CommandBase::CommandBase(void (*)(filament::backend::Driver &, filament::backend::CommandBase *, int *)) CommandStream.h:63
[Inlined] filament::backend::CommandType<void (filament::backend::Driver::*)(filament::backend::Handle<filament::backend::HwVertexBuffer>, unsigned char, unsigned char, unsigned int, std::__ndk1::array<filament::backend::Attribute, 16u>)>::Command<&filament::backend::Driver::createVertexBufferR(filament::backend::Handle<filament::backend::HwVertexBuffer>, unsigned char, unsigned char, unsigned int, std::__ndk1::array<filament::backend::Attribute, 16u>)>::Command<filament::backend::Handle<filament::backend::HwVertexBuffer>, unsigned char, unsigned char, unsigned int, std::__ndk1::array<filament::backend::Attribute, 16u>>(void (*)(filament::backend::Driver&, filament::backend::CommandBase*, int*), filament::backend::Handle<filament::backend::HwVertexBuffer>&&, unsigned char&&, unsigned char&&, unsigned int&&, std::__ndk1::array<filament::backend::Attribute, 16u>&&) CommandStream.h:154
[Inlined] filament::backend::CommandStream::createVertexBuffer(unsigned char, unsigned char, unsigned int, std::__ndk1::array<>) DriverAPI.inc:169
filament::FVertexBuffer::FVertexBuffer(filament::FEngine &, const filament::VertexBuffer::Builder &) VertexBuffer.cpp:185
[Inlined] utils::Arena::make<>(filament::FEngine &, const filament::VertexBuffer::Builder &) Allocator.h:647
[Inlined] filament::FEngine::create<>(filament::ResourceList<> &, const filament::FVertexBuffer::Builder &) Engine.cpp:680
filament::FEngine::createVertexBuffer(const filament::VertexBuffer::Builder &) Engine.cpp:690
filament::FEngine::init() Engine.cpp:277
filament::FEngine::create(filament::backend::Backend, filament::backend::Platform *, void *, const filament::Engine::Config *) Engine.cpp:110
[Inlined] FilamentTest::setupFilament() FilamentTest.cpp:98
FilamentTest::init() FilamentTest.cpp:68
boxing::xr::composer::StartBase::instance(ANativeWindow *, int, int) StartBase.h:263
[Inlined] native_OnDrawFrame::$_0::operator()() const JniImpl.cpp:100
[Inlined] std::__ndk1::__invoke<>(native_OnDrawFrame::$_0 &) type_traits:3874
[Inlined] std::__ndk1::__apply_functor<>(native_OnDrawFrame::$_0 &, std::__ndk1::tuple<> &, std::__ndk1::__tuple_indices<>, std::__ndk1::tuple<> &&) functional:2853
[Inlined] std::__ndk1::__bind::operator()<>() functional:2886
[Inlined] std::__ndk1::__invoke<>(std::__ndk1::__bind<> &) type_traits:3874
std::__ndk1::__packaged_task_func::operator()() future:1817
[Inlined] std::__ndk1::__packaged_task_function::operator()() const future:1994
std::__ndk1::packaged_task::operator()() future:2214
[Inlined] std::__ndk1::__function::__value_func::operator()() const functional:1884
[Inlined] std::__ndk1::function::operator()() const functional:2556
<lambda>::operator()() const ThreadPool.h:71
[Inlined] decltype(std::__ndk1::forward<boxing::core::ThreadPool::ThreadPool(unsigned int)::'lambda'()>(fp)()) std::__ndk1::__invoke<boxing::core::ThreadPool::ThreadPool(unsigned int)::'lambda'()>(boxing::core::ThreadPool::ThreadPool(unsigned int)::'lambda'()&&) type_traits:3874
[Inlined] std::__ndk1::__thread_execute<>(std::__ndk1::tuple<> &, std::__ndk1::__tuple_indices<>) thread:273
std::__ndk1::__thread_proxy<>(void *) thread:284
__pthread_start(void*) 0x00000000eab36828
__start_thread 0x00000000eaaed5ce

渲染设备API定义:

filament\filament\backend\include\private\backend\DriverAPI.inc

DriverAPI.inc中使用大量的宏替换操作,将设备接口进行封装,或打包,这部分代码可读性极差,不过可从其调用逻辑来进行拆解和理解:
先来分析其中一个接口: createVertexBuffer 创建一个顶点缓冲

DECL_DRIVER_API_R_N(backend::VertexBufferHandle, createVertexBuffer,uint8_t, bufferCount,uint8_t, attributeCount,uint32_t, vertexCount,backend::AttributeArray, attributes)

这里不是真的创建,而要看这个宏接口在哪里使用,我们主要看看这两个地方:

  CommandStream.h  //命令流Driver.h   //设备接口

这两个文件中都对DriverAPI.inc进行了include,但是意义完全不一样,先看DECL_DRIVER_API_R_N:

#define DECL_DRIVER_API_R_N(R, N, ...) \DECL_DRIVER_API_RETURN(R, N, PAIR_ARGS_N(ARG, ##__VA_ARGS__), PAIR_ARGS_N(PARAM, ##__VA_ARGS__))

关键在DECL_DRIVER_API_RETURN这个宏,在CommandStream.h和Driver.h头文件中include文件DriverAPI.inc 之前分别定义了自己的DECL_DRIVER_API_RETURN宏,看看CommandStream.h中:

#define DECL_DRIVER_API(methodName, paramsDecl, params)                                         \inline void methodName(paramsDecl) {                                                        \DEBUG_COMMAND_BEGIN(methodName, false, params);                                         \using Cmd = COMMAND_TYPE(methodName);                                                   \void* const p = allocateCommand(CommandBase::align(sizeof(Cmd)));                       \new(p) Cmd(mDispatcher.methodName##_, APPLY(std::move, params));                        \DEBUG_COMMAND_END(methodName, false);                                                   \}#define DECL_DRIVER_API_SYNCHRONOUS(RetType, methodName, paramsDecl, params)                    \inline RetType methodName(paramsDecl) {                                                     \DEBUG_COMMAND_BEGIN(methodName, true, params);                                          \AutoExecute callOnExit([=](){                                                           \DEBUG_COMMAND_END(methodName, true);                                                \});                                                                                     \return apply(&Driver::methodName, mDriver, std::forward_as_tuple(params));              \}#define DECL_DRIVER_API_RETURN(RetType, methodName, paramsDecl, params)                         \inline RetType methodName(paramsDecl) {                                                     \DEBUG_COMMAND_BEGIN(methodName, false, params);                                         \RetType result = mDriver.methodName##S();                                               \using Cmd = COMMAND_TYPE(methodName##R);                                                \void* const p = allocateCommand(CommandBase::align(sizeof(Cmd)));                       \new(p) Cmd(mDispatcher.methodName##_, RetType(result), APPLY(std::move, params));       \DEBUG_COMMAND_END(methodName, false);                                                   \return result;                                                                          \}

上面三个宏的作用基本是一样的,都将要调用的函数和参数封装为了Command,不同之处在于DECL_DRIVER_API是command无返回值的,DECL_DRIVER_API_SYNCHRONOUS是封装为command后同步执行的,DECL_DRIVER_API_RETURN是需要返回值的
主要看看DECL_DRIVER_API_RETURN:

RetType result = mDriver.methodName##S();    

将方法名后面拼接了S,调用拿到返回类型
看看拼接S后的实现:

Handle<HwVertexBuffer> OpenGLDriver::createVertexBufferS() noexcept {return initHandle<GLVertexBuffer>();
}

initHandle()这句在filament内存池HandleArena上创建了一个GLVertexBuffer对象,然后根据内存地址创建了对象的唯一handeID
再看下面这句:
using Cmd = COMMAND_TYPE(methodName##R);
方法名后面拼接了R,然后获取了command的类型,没有执行方法,看看拼接R后的实现:

void OpenGLDriver::createVertexBufferR(Handle<HwVertexBuffer> vbh,uint8_t bufferCount,uint8_t attributeCount,uint32_t elementCount,AttributeArray attributes) {DEBUG_MARKER()construct<GLVertexBuffer>(vbh, bufferCount, attributeCount, elementCount, attributes);
}

内存池HandleArena上创建了一个GLVertexBuffer对象
再看下面一句

void* const p = allocateCommand(CommandBase::align(sizeof(Cmd)));   
new(p) Cmd(mDispatcher.methodName##_, RetType(result), APPLY(std::move, params));   

在CommandStream内部的环形缓冲上申请了一块Command对象的内存p,然后在内存p上new了对象Command
看看CommandBase* execute执行函数的实现:

inline CommandBase* execute(Driver& driver) {// returning the next command by output parameter allows the compiler to perform the// tail-call optimization in the function called by mExecute, however that comes at// a cost here (writing and reading the stack at each iteration), in the end it's// probably better to pay the cost at just one location.intptr_t next;mExecute(driver, this, &next);return reinterpret_cast<CommandBase*>(reinterpret_cast<intptr_t>(this) + next);
}

mExecute就是上面new(p) Cmd(mDispatcher.methodName##_, RetType(result), APPLY(std::move, params)); 后的函数和参数的封装体,然后拿到了下一个圆形缓冲中下一个command的地址偏移量next,返回下一个command地址
CommandStream中执行command,执行完然后获取下一个执行。。。

mDriver.execute([this, buffer]() {Driver& UTILS_RESTRICT driver = mDriver;CommandBase* UTILS_RESTRICT base = static_cast<CommandBase*>(buffer);while (UTILS_LIKELY(base)) {base = base->execute(driver);}
});

这篇关于Filament引擎分析--command抽象设备API的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/464456

相关文章

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑