本文主要是介绍通过仿真理解信道化接收机分析过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
概要
信道化从子信道带宽划分上可分为临界抽取和非临界抽取两种,从各子信道中心频率布局上可分为偶型排列和奇型排列,从处理流程上可分为信道化分析与信道化综合过程。本文主要通过仿真来理解偶型排列/临界抽取/信道化分析过程。
基本原理
常规的数字接收链路,通过正交数字下变频将过采样数字谱中某个频带信号变频到基带,后通过数字低通滤波并抽取降速后输出。这种方式只能处理最大不超过二分之一采样速率的一个信道。信道化的概念是将数字谱分为多个信道,多个信道并行完成正交下变频-低通滤波-抽取降速的过程,如此一来就可以在频域上将可能存在的不同信号区分开来,进行检测、处理,同时这一过程能够有效提升接收动态和噪声性能。比如接收机需要在宽开频段内同时接收多个通信、导航、识别CNI信号,上述信道化的过程就能够将时间上重合的多个功能的信号进行分离处理。
在实际设计中可采用多相离散傅里叶变换(PDFT)结构实现该过程。PDFT结构是在ADC转换器后端的宽开信道中设计一组滤波器组。基于PDFT结构,可构建基本数字信道化接收机架构如图1所示,通过将宽带信道均匀分为N个子信道覆盖,然后通过变频将每个频带上的高频信号变到基带上,最后设计统一的基带低通滤波器完成滤波并进行抽取。
上述结构抽取在DDC和低通滤波后进行,这意味着DDC与低通滤波均工作在初始采样速率,同时每个低通滤波器阶数均为原始阶数,为了简化实现该结构,可采用等效的多相滤波实现信道化,即图2所示,将抽取置于滤波和正交下变频前,一方面可以使后续并行处理速率降低到原始采样速率的N分之一;同时原始低通滤波器可分解为N个阶数只有原始滤波器N分之一的滤波器组进行并行滤波,解决了硬件实现的乘法器资源;下变频过程通过DFT可以利用现成的IP核高效实现。
程序仿真
通过仿真理解图2所示的多相滤波实现信道化方案特性,仿真采样速率为88MHz,输入复数单音信号8MHz,数据长度为8192,信噪比30dB,分为8个子信道,原始低通滤波器阶数为256阶,8相后每个通道只有32阶,每个通道的数据为1024点,并行处理速率降为8分之一为11MHz。信道化输出的8通道时域数据如图3所示。8MHz位于偶型排列的信道2,于是在信道2能看到时域输出,而其它子信道则无信号输出。
进一步进行子信道时域数据的傅里叶变换,所展示频谱均为降速后位于-5.5MHz~5.5MHz基带谱内。同样只有信道2有信号,原始信号频率为8MHz,信道化变换到基带后频率为-2.5MHz。
小结
从单通道数字正交下变频,到多通道数字正交下变频,再到多相结构实现的正交下变频,简要叙述了相互区别核联系,进一步通过一个仿真实例理解偶型排列/临界抽取/信道化分析过程。
这篇关于通过仿真理解信道化接收机分析过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!