KNN算法原理 K Nearest Neighbour

2023-12-06 22:40

本文主要是介绍KNN算法原理 K Nearest Neighbour,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

K-临近算法原理

简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类。
存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据 与所属分类的对应关系。
输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的 特征进行比较,常用的是计算欧几里得距离,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
一般来说,我们 只选择样本数据集中前K个最相似的数据,这就是K-近邻算法中K的出处,通常K是不大于20的整数。 最后 ,选择K个最相似数据中出现次数最多的分类,作为新数据的分类。

实例:选取鸢尾花数据进行分类

# load_iris是机器学习库提供给我们研究算法的数据
from sklearn.datasets import load_iris
iris = load_iris()
data = iris.data # 150个花的特征数据
target = iris.target # 每个数据对应的分类结果
target_names = iris.target_names # 每个结果对应的名字
feature_names = iris.feature_names # 所有的特征features = DataFrame(data=data,columns = feature_names)# 获取训练集和测试集,为了能够在图上显示,只选择两个特征进行features.iloc[:,0].std()
#0.828066127977863features.iloc[:,2].std()
#1.7652982332594662features.iloc[:,1].std()
#0.4358662849366982features.iloc[:,3].std()
#0.7622376689603465# 选区标准差较大的两个作为训练数据
# samples(训练集、测试集)
X_train = features.iloc[:130,2:4]
y_train = target[:130]# 测试集(验证训练模型的准确度)
X_test = features.iloc[130:,2:4]
y_test = target[130:]# 绘制图形
import matplotlib.pyplot as plt
%matplotlib inline
samples = features.iloc[:,2:4]# 展示真实数据的分类情况
plt.scatter(samples.iloc[:,0],samples.iloc[:,1],c=target)

鸢尾花

# 定义KNN分类器,训练数据,生成预测结果。
knnclf = KNeighborsClassifier(n_neighbors=5)
knnclf.fit(X_train,y_train)
y_ = knnclf.predict(X_test)# 获取所有预测点(满屏幕的点),将满屏幕的点最为预测数据
xmin,xmax = samples.iloc[:,0].min(),samples.iloc[:,0].max()
ymin,ymax = samples.iloc[:,1].min(),samples.iloc[:,1].max()x = np.linspace(xmin,xmax,100)
y = np.linspace(ymin,ymax,100)xx,yy = np.meshgrid(x,y)X_test = np.c_[xx.ravel(),yy.ravel()]
y_ = knnclf.predict(X_test)
# 显示数据
from matplotlib.colors import ListedColormapcmap = ListedColormap(['#aa00ff','#00aaff','#ffaa00'])# 展示预测数据的分类情况
plt.scatter(X_test[:,0],X_test[:,1],c=y_,cmap=cmap)
# 展示真实数据的分类情况
plt.scatter(samples.iloc[:,0],samples.iloc[:,1],c=target)

在这里插入图片描述

KNN算法还可用于回归分析

第一步:生成模型,并训练数据
第二步:使用模型,预测数据
大概思路,使用周围几个点(根据n_neighbors的取值)坐标的平均值作为线上的点

小结

  • 优点:精度高、对异常值不敏感、无数据输入假定。
  • 缺点:时间复杂度高、空间复杂度高。
  • 适用数据范围:数值型和标称型。

这篇关于KNN算法原理 K Nearest Neighbour的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/463605

相关文章

Java线程池核心参数原理及使用指南

《Java线程池核心参数原理及使用指南》本文详细介绍了Java线程池的基本概念、核心类、核心参数、工作原理、常见类型以及最佳实践,通过理解每个参数的含义和工作原理,可以更好地配置线程池,提高系统性能,... 目录一、线程池概述1.1 什么是线程池1.2 线程池的优势二、线程池核心类三、ThreadPoolE

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node