【论文笔记】A Transformer-based Approach for Source Code Summarization

本文主要是介绍【论文笔记】A Transformer-based Approach for Source Code Summarization,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A Transformer-based Approach for Source Code Summarization

    • 1. Introduction
    • 2. Approach
      • 2.1 Architecture
        • Self-Attention
        • Copy Attention
      • 2.2 Position Representations
        • 编码绝对位置
        • 编码成对关系

1. Introduction

生成描述程序功能的可读摘要称为源代码摘要。在此任务中,通过对代码标记之间的成对关系进行建模来捕获其远程依赖关系,对学习代码表示至关重要。为了学习摘要的代码表示,本方法探索了 Transformer 模型,该模型使用 self-attention 机制,并且已被证明可以有效捕获远程依赖关系。为了学习序列中标记的顺序并对标记之间的关系进行建模,Transformer 需要注入位置编码。在这项工作中,本方法表明,通过使用相对位置表示对源代码标记之间的成对关系进行建模,相较于使用绝对位置表示学习代码标记的序列信息会取得更显著的改进。

2. Approach

本方法提出在给定一段源代码的情况下使用 Transformer 生成自然语言摘要。代码和摘要都是由向量序列 x = (x1, …, xn) 表示的标记序列,其中 xi ∈ Rdmodel 。在本节中,将简要描述 Transformer 架构以及如何在 Transformer 中对源代码标记的顺序或其成对关系进行建模。

2.1 Architecture

Transformer 由编码器和解码器的堆叠多头注意力和参数化线性变换层组成。在每一层,多头注意力采用 h 个注意力头并执行自注意力机制。

Self-Attention

在每个注意力头中,输入向量序列 x = (x1, . . . , xn) (其中 xi ∈ Rdmodel)被转换为输出向量序列,o = (o1, . . . , on) 其中 oi ∈ Rdk:
在这里插入图片描述
W Q , W K W^Q,W^K WQ,WK 在每一层的每一个头中都是唯一的参数。

Copy Attention

我们在 Transformer 中加入了复制机制,以允许从词汇表生成单词并从输入的源代码中进行复制。我们使用额外的注意力层来学习解码器堆栈顶部的副本分布。复制注意力使 Transformer 能够从源代码中复制罕见的标记(例如函数名称、变量名称),从而显着提高摘要性能。

2.2 Position Representations

现在,我们讨论如何学习源代码标记的顺序和建模它们的成对关系。

编码绝对位置

为了让 Transformer 利用源代码 token 的顺序信息,我们训练了一个嵌入矩阵 W P e W^{Pe} WPe ,它学习将 token 的绝对位置编码为 d m o d e l d_{model} dmodel 维度的向量。然而,我们表明,捕获代码标记的顺序对学习源代码表示没有帮助,并且会导致摘要性能较差。

编码成对关系

代码的语义表示不依赖于其标记的绝对位置。相反,它们的相互作用会影响源代码的含义。例如,表达式a+b和b+a的语义是相同的。

为了对输入元素之间的成对关系进行编码,将自注意力机制扩展如下。
在这里插入图片描述
将输入元素之间的edge表示为 a i j V , a i j K a_{ij}^V,a_{ij}^K aijV,aijK

考虑到计算量、内存消耗以及远距离的精确位置信息效用足等因素,此方法对最远的相对位置距离限制为 k k k

Relative Position Representation 的目标是给出 a i , j V , a i , j K a_{i,j}^V,a_{i,j}^K ai,jV,ai,jK 的计算方式。假设如果序列中两个元素的距离超过 k k k,则这两元素之间的位置信息就没有意义了。剪裁最大距离还使模型能够泛化训练期间看不到的序列长度,因此,考虑 2 k + 1 2k+1 2k+1 个唯一的edge标签。
在这里插入图片描述
在这种设定下, a i , j V , a i , j K a_{i,j}^V,a_{i,j}^K ai,jV,ai,jK 应该只与相对位置有关,而与 x i , j , x i , j x_{i,j},x_{i,j} xi,j,xi,j 没有关系。作者直接将 a i , j V , a i , j K a_{i,j}^V,a_{i,j}^K ai,jV,ai,jK 定义为可训练的向量,本质上是训练 w K = ( w − k K , . . . , w k K ) w^K=(w_{-k}^K,...,w_k^K) wK=(wkK,...,wkK) w V = ( w − k V , . . . , w k V ) w^V=(w_{-k}^V,...,w_k^V) wV=(wkV,...,wkV) w i K , w i V ∈ R d a w_i^K,w_i^V∈\mathbb{R}^{d_a} wiK,wiVRda

本方法研究了忽略方向信息的相对位置表示的替代方案。换句话说,第j个标记是在第i个标记的左边还是右边的信息被忽略。
在这里插入图片描述

这篇关于【论文笔记】A Transformer-based Approach for Source Code Summarization的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459468

相关文章

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓