【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

本文主要是介绍【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

文章目录

  • 【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】
    • 1.推导
    • 2. Code
    • Reference

结果先放在前面

Image

1.推导

在学习PEARL算法的时候,encoder的设计涉及到了高斯分布的乘积,对此有点疑问,进行推导补票。

首先高斯分布(Guassian Distribution)的概率密度函数为

f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp({-\frac{(x-\mu)^2}{2\sigma^2}}) f(x)=2π σ1exp(2σ2(xμ)2)

通常将单位高斯分布记为 N ∼ ( 0 , 1 ) \mathcal{N}\sim(0,1) N(0,1),一般的高斯分布记为 N ∼ ( μ , σ ) \mathcal{N}\sim(\mu,\sigma) N(μ,σ),其中 μ \mu μ是高斯分布的均值(mean), σ \sigma σ是高斯分布的标准差(standard variance), σ 2 \sigma^2 σ2是高斯分布的方差(variance)。

​ 接下来推导高斯分布的乘积,假设有两个高斯分布,分别为
N 1 ∼ ( μ 1 , σ 1 ) , N 2 ∼ ( μ 2 , σ 2 ) \mathcal{N}_1\sim(\mu_1,\sigma_1),\mathcal{N}_2\sim(\mu_2,\sigma_2) N1(μ1,σ1),N2(μ2,σ2),那么其概率密度函数的乘积为

f 1 ( x ) f 2 ( x ) = 1 2 π σ 1 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 ) × 1 2 π σ 2 exp ⁡ ( − ( x − μ 2 ) 2 2 σ 2 2 ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 − ( x − μ 2 ) 2 2 σ 2 2 ) \begin{align} f_1(x)f_2(x) & = \frac{1}{\sqrt{2\pi}\sigma_1}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2}) \times \frac{1}{\sqrt{2\pi}\sigma_2}\exp(-\frac{(x-\mu_2)^2}{2\sigma_2^2}) \\ & = \frac{1}{2\pi\sigma_1\sigma_2}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(x-\mu_2)^2}{2\sigma_2^2} ) \end{align} f1(x)f2(x)=2π σ11exp(2σ12(xμ1)2)×2π σ21exp(2σ22(xμ2)2)=2πσ1σ21exp(2σ12(xμ1)22σ22(xμ2)2)

我们单独分析指数部分,

( x − μ 1 ) 2 2 σ 1 2 + ( x − μ 2 ) 2 2 σ 2 2 = ( σ 1 2 + σ 2 2 ) x 2 − 2 x ( μ 2 σ 1 2 + μ 1 σ 2 2 ) + ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) 2 σ 1 2 σ 2 2 = x 2 − 2 x μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \begin{align} \frac{(x-\mu_1)^2}{2\sigma_1^2} + \frac{(x-\mu_2)^2}{2\sigma_2^2} & = \frac{(\sigma_1^2 + \sigma_2^2)x^2 - 2x(\mu_2\sigma_1^2 + \mu_1\sigma_2^2) + (\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2) }{2\sigma_1^2\sigma_2^2} \\ & = \frac{ x^2 - 2x\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2} + \frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} }{ \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} \\ & = \frac{ (x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2 + \frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2 }{ \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} } \\ & = \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} + \frac{\frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} \end{align} 2σ12(xμ1)2+2σ22(xμ2)2=2σ12σ22(σ12+σ22)x22x(μ2σ12+μ1σ22)+(μ12σ22+μ22σ12)=σ12+σ222σ12σ22x22xσ12+σ22μ2σ12+μ1σ22+σ12+σ22μ12σ22+μ22σ12=σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2+σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2=σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2+σ12+σ222σ12σ22σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2

继续化简上面的常数部分

μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) ( σ 1 2 + σ 2 2 ) + ( μ 2 σ 1 2 + μ 1 σ 2 2 ) 2 2 σ 1 2 σ 2 2 ( σ 1 2 + σ 2 2 ) = ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) \begin{align} \frac{\frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} & = \frac{(\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2)(\sigma_1^2 + \sigma_2^2) + (\mu_2\sigma_1^2 + \mu_1\sigma_2^2)^2}{2\sigma_1^2\sigma_2^2(\sigma_1^2+\sigma_2^2)} \\ & = \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} \end{align} σ12+σ222σ12σ22σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2=2σ12σ22(σ12+σ22)(μ12σ22+μ22σ12)(σ12+σ22)+(μ2σ12+μ1σ22)2=2(σ12+σ22)(μ1μ2)2

则我们可以将概率密度函数的乘积写为

f 1 ( x ) f 2 ( x ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 − ( x − μ 2 ) 2 2 σ 2 2 ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 − ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) ) = 1 2 π ( σ 1 2 + σ 2 2 ) exp ⁡ ( − ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) ) ⏟ S g × 1 2 π σ 1 2 σ 2 2 σ 1 2 + σ 2 2 exp ⁡ ( − ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 ) = S g × 1 2 π μ exp ⁡ ( − ( x − μ ) 2 2 σ ) \begin{align} f_1(x)f_2(x) & =\frac{1}{2\pi\sigma_1\sigma_2}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(x-\mu_2)^2}{2\sigma_2^2} ) \\ & = \frac{1}{2\pi\sigma_1\sigma_2} \exp( - \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} - \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} ) \\ & = \underbrace{\frac{1}{\sqrt{2\pi(\sigma_1^2+\sigma_2^2)}}\exp(-\frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)})}_{S_g} \times \frac{1}{\sqrt{2\pi \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} }}\exp(- \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}}) \\ & = S_g\times \frac{1}{\sqrt{2\pi \mu}} \exp(-\frac{(x-\mu)^2}{2\sigma}) \end{align} f1(x)f2(x)=2πσ1σ21exp(2σ12(xμ1)22σ22(xμ2)2)=2πσ1σ21exp(σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)22(σ12+σ22)(μ1μ2)2)=Sg 2π(σ12+σ22) 1exp(2(σ12+σ22)(μ1μ2)2)×2πσ12+σ22σ12σ22 1exp(σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2)=Sg×2πμ 1exp(2σ(xμ)2)

其中

μ = μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 , σ 2 = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \mu = \frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2}, \sigma^2 =\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} μ=σ12+σ22μ2σ12+μ1σ22,σ2=σ12+σ22σ12σ22

所以两个高斯分布的乘积仍然为高斯分布,且均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2 S g S_g Sg被称为缩放因子,即相乘后的分布函数为一个被压缩或者放大的高斯分布,相乘后的概率密度的积分不等于1,但其方差和均值性质不变,仍然符合高斯分布。

​ 拓展到多个高斯分布相乘的结果,可以得到

μ = μ 1 σ 2 2 σ 3 2 + μ 2 σ 1 2 σ 3 2 + μ 3 σ 1 2 σ 2 2 σ 1 2 σ 2 2 + σ 1 2 σ 3 2 + σ 2 2 σ 3 2 , σ 2 = σ 1 2 σ 2 2 σ 3 2 σ 1 2 σ 2 2 + σ 1 2 σ 3 2 + σ 2 2 σ 3 2 \mu = \frac{\mu_1\sigma_2^2\sigma_3^2 + \mu_2\sigma_1^2\sigma_3^2 + \mu_3\sigma_1^2\sigma_2^2 }{\sigma_1^2\sigma_2^2 + \sigma_1^2\sigma_3^2 + \sigma_2^2\sigma_3^2}, \sigma^2 = \frac{\sigma_1^2\sigma_2^2\sigma_3^2}{\sigma_1^2\sigma_2^2 + \sigma_1^2\sigma_3^2 + \sigma_2^2\sigma_3^2} μ=σ12σ22+σ12σ32+σ22σ32μ1σ22σ32+μ2σ12σ32+μ3σ12σ22,σ2=σ12σ22+σ12σ32+σ22σ32σ12σ22σ32

2. Code

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm# 设定均值和标准差
mean = np.array([1, 2, 3])
var = np.array([1, 3, 5])x = np.linspace(-15, 15, 1000)
pdfs = []
# 计算高斯分布的概率密度函数(Probability Density Function, PDF)
for mu, sigma in zip(mean, var):pdfs.append(norm.pdf(x, mu, np.sqrt(sigma)))# 绘制高斯分布曲线
plt.plot(x, pdfs[0], 'r-', linewidth=2, label='mean=1, var=1')
plt.fill_between(x, pdfs[0], color='red', alpha=0.5)
plt.plot(x, pdfs[1], 'g-', linewidth=2, label='mean=2, var=3')
plt.fill_between(x, pdfs[1], color='g', alpha=0.5)
plt.plot(x, pdfs[2], 'b-', linewidth=2, label='mean=3, var=5')
plt.fill_between(x, pdfs[2], color='b', alpha=0.5)# 计算三个高斯分布的乘积
prod_mean = 1.0 / np.sum(np.reciprocal(mean), axis=0)
prod_var = prod_mean * np.sum(mean / var, axis=0)
pdf = norm.pdf(x, prod_mean, np.sqrt(prod_var))
plt.plot(x, pdf, 'k--', linewidth=2, label='product')
plt.fill_between(x, pdf, color='y', alpha=0.7)# 添加标签和标题
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.title('Normal Distribution')
plt.legend()# 显示图形
plt.show()

Reference

https://blog.csdn.net/chaosir1991/article/details/106910668

这篇关于【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458921

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形