【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

本文主要是介绍【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

文章目录

  • 【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】
    • 1.推导
    • 2. Code
    • Reference

结果先放在前面

Image

1.推导

在学习PEARL算法的时候,encoder的设计涉及到了高斯分布的乘积,对此有点疑问,进行推导补票。

首先高斯分布(Guassian Distribution)的概率密度函数为

f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp({-\frac{(x-\mu)^2}{2\sigma^2}}) f(x)=2π σ1exp(2σ2(xμ)2)

通常将单位高斯分布记为 N ∼ ( 0 , 1 ) \mathcal{N}\sim(0,1) N(0,1),一般的高斯分布记为 N ∼ ( μ , σ ) \mathcal{N}\sim(\mu,\sigma) N(μ,σ),其中 μ \mu μ是高斯分布的均值(mean), σ \sigma σ是高斯分布的标准差(standard variance), σ 2 \sigma^2 σ2是高斯分布的方差(variance)。

​ 接下来推导高斯分布的乘积,假设有两个高斯分布,分别为
N 1 ∼ ( μ 1 , σ 1 ) , N 2 ∼ ( μ 2 , σ 2 ) \mathcal{N}_1\sim(\mu_1,\sigma_1),\mathcal{N}_2\sim(\mu_2,\sigma_2) N1(μ1,σ1),N2(μ2,σ2),那么其概率密度函数的乘积为

f 1 ( x ) f 2 ( x ) = 1 2 π σ 1 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 ) × 1 2 π σ 2 exp ⁡ ( − ( x − μ 2 ) 2 2 σ 2 2 ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 − ( x − μ 2 ) 2 2 σ 2 2 ) \begin{align} f_1(x)f_2(x) & = \frac{1}{\sqrt{2\pi}\sigma_1}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2}) \times \frac{1}{\sqrt{2\pi}\sigma_2}\exp(-\frac{(x-\mu_2)^2}{2\sigma_2^2}) \\ & = \frac{1}{2\pi\sigma_1\sigma_2}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(x-\mu_2)^2}{2\sigma_2^2} ) \end{align} f1(x)f2(x)=2π σ11exp(2σ12(xμ1)2)×2π σ21exp(2σ22(xμ2)2)=2πσ1σ21exp(2σ12(xμ1)22σ22(xμ2)2)

我们单独分析指数部分,

( x − μ 1 ) 2 2 σ 1 2 + ( x − μ 2 ) 2 2 σ 2 2 = ( σ 1 2 + σ 2 2 ) x 2 − 2 x ( μ 2 σ 1 2 + μ 1 σ 2 2 ) + ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) 2 σ 1 2 σ 2 2 = x 2 − 2 x μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \begin{align} \frac{(x-\mu_1)^2}{2\sigma_1^2} + \frac{(x-\mu_2)^2}{2\sigma_2^2} & = \frac{(\sigma_1^2 + \sigma_2^2)x^2 - 2x(\mu_2\sigma_1^2 + \mu_1\sigma_2^2) + (\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2) }{2\sigma_1^2\sigma_2^2} \\ & = \frac{ x^2 - 2x\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2} + \frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} }{ \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} \\ & = \frac{ (x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2 + \frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2 }{ \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} } \\ & = \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} + \frac{\frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} \end{align} 2σ12(xμ1)2+2σ22(xμ2)2=2σ12σ22(σ12+σ22)x22x(μ2σ12+μ1σ22)+(μ12σ22+μ22σ12)=σ12+σ222σ12σ22x22xσ12+σ22μ2σ12+μ1σ22+σ12+σ22μ12σ22+μ22σ12=σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2+σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2=σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2+σ12+σ222σ12σ22σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2

继续化简上面的常数部分

μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) ( σ 1 2 + σ 2 2 ) + ( μ 2 σ 1 2 + μ 1 σ 2 2 ) 2 2 σ 1 2 σ 2 2 ( σ 1 2 + σ 2 2 ) = ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) \begin{align} \frac{\frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} & = \frac{(\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2)(\sigma_1^2 + \sigma_2^2) + (\mu_2\sigma_1^2 + \mu_1\sigma_2^2)^2}{2\sigma_1^2\sigma_2^2(\sigma_1^2+\sigma_2^2)} \\ & = \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} \end{align} σ12+σ222σ12σ22σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2=2σ12σ22(σ12+σ22)(μ12σ22+μ22σ12)(σ12+σ22)+(μ2σ12+μ1σ22)2=2(σ12+σ22)(μ1μ2)2

则我们可以将概率密度函数的乘积写为

f 1 ( x ) f 2 ( x ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 − ( x − μ 2 ) 2 2 σ 2 2 ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 − ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) ) = 1 2 π ( σ 1 2 + σ 2 2 ) exp ⁡ ( − ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) ) ⏟ S g × 1 2 π σ 1 2 σ 2 2 σ 1 2 + σ 2 2 exp ⁡ ( − ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 ) = S g × 1 2 π μ exp ⁡ ( − ( x − μ ) 2 2 σ ) \begin{align} f_1(x)f_2(x) & =\frac{1}{2\pi\sigma_1\sigma_2}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(x-\mu_2)^2}{2\sigma_2^2} ) \\ & = \frac{1}{2\pi\sigma_1\sigma_2} \exp( - \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} - \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} ) \\ & = \underbrace{\frac{1}{\sqrt{2\pi(\sigma_1^2+\sigma_2^2)}}\exp(-\frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)})}_{S_g} \times \frac{1}{\sqrt{2\pi \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} }}\exp(- \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}}) \\ & = S_g\times \frac{1}{\sqrt{2\pi \mu}} \exp(-\frac{(x-\mu)^2}{2\sigma}) \end{align} f1(x)f2(x)=2πσ1σ21exp(2σ12(xμ1)22σ22(xμ2)2)=2πσ1σ21exp(σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)22(σ12+σ22)(μ1μ2)2)=Sg 2π(σ12+σ22) 1exp(2(σ12+σ22)(μ1μ2)2)×2πσ12+σ22σ12σ22 1exp(σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2)=Sg×2πμ 1exp(2σ(xμ)2)

其中

μ = μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 , σ 2 = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \mu = \frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2}, \sigma^2 =\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} μ=σ12+σ22μ2σ12+μ1σ22,σ2=σ12+σ22σ12σ22

所以两个高斯分布的乘积仍然为高斯分布,且均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2 S g S_g Sg被称为缩放因子,即相乘后的分布函数为一个被压缩或者放大的高斯分布,相乘后的概率密度的积分不等于1,但其方差和均值性质不变,仍然符合高斯分布。

​ 拓展到多个高斯分布相乘的结果,可以得到

μ = μ 1 σ 2 2 σ 3 2 + μ 2 σ 1 2 σ 3 2 + μ 3 σ 1 2 σ 2 2 σ 1 2 σ 2 2 + σ 1 2 σ 3 2 + σ 2 2 σ 3 2 , σ 2 = σ 1 2 σ 2 2 σ 3 2 σ 1 2 σ 2 2 + σ 1 2 σ 3 2 + σ 2 2 σ 3 2 \mu = \frac{\mu_1\sigma_2^2\sigma_3^2 + \mu_2\sigma_1^2\sigma_3^2 + \mu_3\sigma_1^2\sigma_2^2 }{\sigma_1^2\sigma_2^2 + \sigma_1^2\sigma_3^2 + \sigma_2^2\sigma_3^2}, \sigma^2 = \frac{\sigma_1^2\sigma_2^2\sigma_3^2}{\sigma_1^2\sigma_2^2 + \sigma_1^2\sigma_3^2 + \sigma_2^2\sigma_3^2} μ=σ12σ22+σ12σ32+σ22σ32μ1σ22σ32+μ2σ12σ32+μ3σ12σ22,σ2=σ12σ22+σ12σ32+σ22σ32σ12σ22σ32

2. Code

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm# 设定均值和标准差
mean = np.array([1, 2, 3])
var = np.array([1, 3, 5])x = np.linspace(-15, 15, 1000)
pdfs = []
# 计算高斯分布的概率密度函数(Probability Density Function, PDF)
for mu, sigma in zip(mean, var):pdfs.append(norm.pdf(x, mu, np.sqrt(sigma)))# 绘制高斯分布曲线
plt.plot(x, pdfs[0], 'r-', linewidth=2, label='mean=1, var=1')
plt.fill_between(x, pdfs[0], color='red', alpha=0.5)
plt.plot(x, pdfs[1], 'g-', linewidth=2, label='mean=2, var=3')
plt.fill_between(x, pdfs[1], color='g', alpha=0.5)
plt.plot(x, pdfs[2], 'b-', linewidth=2, label='mean=3, var=5')
plt.fill_between(x, pdfs[2], color='b', alpha=0.5)# 计算三个高斯分布的乘积
prod_mean = 1.0 / np.sum(np.reciprocal(mean), axis=0)
prod_var = prod_mean * np.sum(mean / var, axis=0)
pdf = norm.pdf(x, prod_mean, np.sqrt(prod_var))
plt.plot(x, pdf, 'k--', linewidth=2, label='product')
plt.fill_between(x, pdf, color='y', alpha=0.7)# 添加标签和标题
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.title('Normal Distribution')
plt.legend()# 显示图形
plt.show()

Reference

https://blog.csdn.net/chaosir1991/article/details/106910668

这篇关于【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458921

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand