C语言实现梁友栋-Barsky算法

2023-12-05 07:28

本文主要是介绍C语言实现梁友栋-Barsky算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

(引用梁友栋-Barsky裁剪算法_梁友栋 barsky算法-CSDN博客)

Cyrus和Beck用参数化方法提出了比Cohen-Sutherland更有效的算法。后来梁友栋和Barsky独立地提出了更快的参数化线段裁剪算法,也称为Liany-Barsky(LB)算法。

     一、梁友栋-Barsky裁剪算法思想:

  我们知道,一条两端点为P1(x1,y1)、P2(x2,y2)的线段可以用参数方程形式表示:

x= x1+ u·(x2-x1)= x1+ u·Δx
y= y1+ u·(y2-y1)= y1+ u·Δy
0≤u≤1(3-9)

  式中,Δx=x2-x1,Δy=y2-y1,参数u在0~1之间取值,P(x,y)代表了该线段上的一个点,其值由参数u确定,由公式可知,当u=0时,该点为P1(x1,y1),当u=1时,该点为P2(x2,y2)。如果点P(x,y)位于由坐标(xwmin,ywmin)和(xwmax,ywmax)所确定的窗口内,那么下式成立:

xwmin≤x1+ u·Δx≤xwmax
ywmin≤y1+ u·Δy≤ywmax
(3-10)

  这四个不等式可以表示为:

u·pk ≤qk , k=1,2,3,4(3-11)

  其中,p、q定义为:

p1=-Δx, q1=x1-xwmin
p2=Δx, q2=xwmax-x1
p3=-Δy, q3=y1-ywmin
p4=Δy, q4=ywmax-y1
(3-12)

  从(3-12)式可以知道:任何平行于窗口某边界的直线,其pk=0(但并不是所有的Pk均为0,是存在pk=0的意思。平行于窗口某边界的图片,会出现 (p1&&p2)||(p3&&p4)=0的情况),k值对应于相应的边界(k=1,2,3,4对应于左、右、下、上边界)。如果还满足qk<0(默认x1为最左点?默认斜率大于0小于1?),则线段完全在边界外,应舍弃该线段。如果pk=0并且qk≥0,则线段平行于窗口某边界并在窗口内,见图中所示。公式(3-12)式还告诉我们:

  1、当pk<0时,线段从裁剪边界延长线的外部延伸到内部;

  2、当pk>0时,线段从裁剪边界延长线的内部延伸到外部;

  例如,当Δx≥0时,对于左边界p1<0(p1=-Δx),线段从左边界的外部到内部;

           对于右边界p2>0(p2=Δx),线段从右边界的内部到外部。

     当Δy<0时,对于下边界p3>0(p3=-Δy),线段从下边界的内部到外部;

          对于上边界p4<0(p4=Δy),线段从上边界的外部到内部。

     当pK≠0时,可以计算出参数u的值,它对应于无限延伸的直线与延伸的窗口边界k的交点,即:

 

  对于每条直线,可以计算出参数u1和u2,该值定义了位于窗口内的线段部分:

  1、u1的值由线段从外到内遇到的矩形边界所决定(pk<0),对这些边界计算rk=qk/pk,u1取0和各个r值之中的最大值。

  2、u2的值由线段从内到外遇到的矩形边界所决定(pk>0),对这些边界计算rk=qk/pk,u2取0和各个r值之中的最小值。

  3、如果u1>u2,则线段完全落在裁剪窗口之外,应当被舍弃;否则,被裁剪线段的端点可以由u1和u2计算出来。

代码实现:

#include<stdio.h>
double xl, xr, yt, yb;//事先给出的已知窗体位置
int cansee(double q, double d, double t0, double t1) //判断直线是否可见
{double r;if (q < 0)//计算初始边的交点参数{r = d / q;if (r > t1){return 0;}else if(r>t0){t0 = r;}}else if(q>0){//计算终边的交点参数r = d / q;if (r < t0) {return 0;}else if (r < t1)t1 = r;}else if (d<0){return 1;}
}void L_Barsky(double x0,double y0,double x1,double y1)//double xl, xr, yt, yb已知
{double t0 = 0.0, t1 = 0.0,delatx=0.0,delaty=0.0;delatx = x1 - x0;if (!cansee(-delatx, x0 - x1, t0, t1))return;if (!candee(delatx, xr - x0, t0, t1))return;delatx = x1 - x0;if (!cansee(-delaty, y0 - yb, t0, t1))return;if (!cansee(delaty, yt - y0, t0, t1))return;x1 = x0 + t1 * delatx;y1 = y0 + t1 * delaty;x0 = x0 + t0 * delatx;y0 = y0 + t0 * delaty;showline(x0, y0, x1, y1);//显示可见线段
}

注意:显示线的方法作者未实现,在WFC可直接调用

这篇关于C语言实现梁友栋-Barsky算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456679

相关文章

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形