CCKS2023-面向上市公司主营业务的实体链接评测-亚军方案

本文主要是介绍CCKS2023-面向上市公司主营业务的实体链接评测-亚军方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

赛题分析

大赛地址

https://tianchi.aliyun.com/competition/entrance/532097/information

任务描述

本次任务主要针对上市公司的主营业务进行产品实体链接。需要获得主营业务中的产品实体,将该实体链接到产品数据库中的某一个标准产品实体。产品数据库将发布在竞赛平台上。比如某一公司主营业务为“主要生产日用居家小家电,生活零售用品等相关产品”,选手从这段话中得到“日用居家小家电”这一产品实体,称为主实体;通过实体链接技术,找到产品数据库中的“生活小件家电”这一标准产品实体,称为链接实体。主实体与链接实体构成一个链接实体对,表示这两个实体是不同名称的相同实体。通过这些链接实体对,从而实现词语消歧以及数据源的融合。选手可以通过合理途径利用其他相关信息辅助任务完成,但是需要在方法描述文档中详细描述如何获取的相关信息以及如何在任务中使用该信息。

任务目标

参赛队伍需要能够准确的从公司主营业务中的出所有产品实体,即主实体,并且需要确定每个主实体在产品数据库中是否存在链接,若存在则需要在产品数据库中找到所有链接实体,形成一个或多个链接实体对,并给出权重,完成实体链接。需要注意的是,一个主实体的所有链接实体的权重相加需要为1。   
数据样例一:

输入:{“companyName”:“xx公司”, “主营业务描述”:“ 公司主要业务为电力、热力生产和供应。”}
输出:{“companyName”:“xx公司”,“EntityPairs”:[[(“电力生产”,“独立电力生产商”,1)],[(“电力供应”,”电力贸易”,1)],[(“热力生产”,”热力的生产和输供”,1)],[(“热力供应”,”热力的生产和输供”,1)]]}

数据样例二:

输入:{“companyName”:“xx公司”, “主营业务描述”:“ 啤酒、饮料制造和销售。”}
输出:{“companyName”:“xx公司”,“EntityPairs”:[[(“啤酒”,“啤酒”,1)],[(“饮料”,”饮料”,1)],[(“啤酒销售”,”啤酒零售”,0.5),(“啤酒销售”,”酒类分销商”,0.5)],[(“饮料销售”,”饮料零售”,1)]]}

任务描述和方案构思

本次任务主要针对上市公司的主营业务进行产品实体链接。首先需要获得主营业务中的产品实体,然后将该实体链接到产品数据库中的某一个标准产品实体。基于此,本方案将赛题任务拆解为三个阶段,如下图所示。

  • 第一阶段:对每个公司的主营文本进行实体抽取,得到待链接的产品实体;
  • 第二阶段:训练向量召回模型,利用产品数据库构建向量索引,并且对每个待链接实体进行向量召回,得到召回候选项;
  • 第三阶段:训练分类排序模型,基于上一阶段得到的召回候选项,进行二分类,得到最终的链接实体;
下面分别对每一个阶段进行详细描述。

任务方案拆解

第一阶段-实体抽取

本阶段任务是对每个公司的主营文本进行实体抽取,得到待链接的产品实体。但是观察数据发现,主营文本中产品实体错综复杂,属于 常规实体、间断实体(非连续实体)和嵌套实体的混合型实体还有一些总结性的实体,单一的实体抽取方案很难处理这种情况。基于此,最终采用采用了两种方案:基于span双指针网络的抽取方案和基于cpt模型的生成式方案。
span双指针网络的抽取方案

在指针标注体系中,使用span模块代替了CRF模块,加快了训练速度,以半指针-半标注的结构预测实体的起始位置,同时标注过程中给出实体类别,简单点说,就是设置两个指针start和end,分别记录每一种实体的开始和结束的位置,并且在记录位置的同时,标注该实体的类别,如上图所示,”商品零售业“和”宾馆旅游业“表示两个实体,但是同属于产品实体一类,实体类别用1表示,最后输出层分别用start dense layer和end dense layer两个指针网络标注两个实体的起始位置和所属类别,最后的损失由两个指针网络的损失累加求和。
训练数据
   
span双指针网络的抽取方案,在训练数据方面,做了一些数据增强,主要集中在两点:
  • 将产品数据库中的数据直接加入训练集,进行模型训练;
  • 使用链接实体替换主营业务文本中的产品实体,进行数据增广;
基于cpt模型的生成式方案

cpt模型是复旦nlp提出的中文生成式模型,本方案基于cpt模型,用于实体抽取。比如某一个公司的主营业务文本为:主营业务为商品零售业和宾馆旅游业,那么具体训练逻辑如下:
  • 训练集输入:主营业务为商品零售业和宾馆旅游业;
  • 训练集标签:商品零售业#宾馆旅游业;
标签使用固定格式,即:使用#进行分割,使用这种生成的方式进行实体抽取。
cpt参考链接:https://github.com/fastnlp/CPT
训练数据
  
基于cpt模型的生成式实体抽取方案,在训练数据方面,做了一点优化:
  • 使用链接实体替换主营业务文本中的产品实体,进行数据增广;
模型融合
   
另外,本阶段使用不同的训练参数(种子、学习率、对抗学习fgm参数、batch_size等等)、不同的初始化模型权重,训练了两个方案的多个模型,每个模型预测一次,生成多个预测文件,进行融合,并且在融合过程中,对于相似的实体,进行实体消歧。

第二阶段-向量召回

本阶段任务是训练向量召回模型,并且利用产品数据库构建向量索引,然后对实体抽取得到的实体(产品实体)进行向量召回,得到召回候选项。
向量召回模型的选择
本方案向量召回模型选择的是基于对比学习的simcse模型,结构如下图,simcse原理这里不再赘述,可自行查阅论文。

向量召回模型训练的数据准备
训练数据主要由两部分组成,正例数据和负例数据。
  • 正例数据:直接使用官方提供的训练数据,使用其中的产品实体和链接实体组成正例对;
  • 负例数据:产品实体从产品数据库中随机选择实体组成负例;
向量索引的构建
向量召回模型训练完成之后,对产品数据库中的每一个产品实体进行向量化表征,然后利用faiss工具构建向量索引库;
实体向量召回
   
基于第一阶段实体抽取得到的实体,对每一个实体进行向量召回,取top30的召回项作为候选项。

第三阶段-分类排序

经过第一阶段和第二阶段,已经得到了公司主营业务文本中的每一个产品实体及其对应的top20候选项,接下来是确定top30候选项中哪些是真正的链接实体,我们选择了二分类来做这个任务。
分类模型
分类模型选择基于bert的二分类模型,如下图所示。

分类模型训练数据
训练数据主要由两部分组成,正例数据和负例数据。
  • 正例数据:直接使用官方提供的训练数据,使用其中的产品实体和链接实体组成正例对;
  • 负例数据:从正例数据中,对产品实体进行向量召回,得到top20候选项,从top20候选项中过滤掉真正的链接实体,剩下的非链接实体与原来的产品实体,组成负例对。举个例子,官方提供的训练数据中,面类和面条分别是产品实体和链接实体,利用向量召回,对面类进行召回,得到两个候选项:面条和面料,显然面类和面料组成一对负例。
分类模型训练完成之后,便可以对公司主营业务文本中的每一个产品实体及其对应的top30候选项,进行分类,确定其真正的链接实体。

总结

最终成绩:初赛第一名,复赛第二名。
另外,感觉给标注数据整体质量不高,存在很多前后冲突、模棱两可的情况,因此榜单上的整体得分都不高。

这篇关于CCKS2023-面向上市公司主营业务的实体链接评测-亚军方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/453111

相关文章

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关