文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑量化储热的多区域电–热综合能源系统优化调度》

本文主要是介绍文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑量化储热的多区域电–热综合能源系统优化调度》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标题 "考虑量化储热的多区域电–热综合能源系统优化调度" 可以分解为几个关键词和短语,我们逐步解读:

  1. 考虑量化储热:

    • 考虑: 意味着在解决问题或进行研究时,会综合或纳入特定因素。
    • 量化: 将抽象的概念或参数用具体的数值表示,即进行定量分析。
    • 储热: 储存热能,可能涉及热能的采集、存储和释放等方面。
  2. 多区域:

    • 涉及多个地理或功能区域,这可能指涉及多个城市、地区、或者系统中的多个子系统。
  3. 电–热综合能源系统:

    • 电: 涉及电能,可能包括发电、输电等。
    • 热: 涉及热能,可能包括热能的生产、输送等。
    • 综合能源系统: 将不同形式的能源集成在一起的系统,这里指的是电能和热能。
  4. 优化调度:

    • 优化: 在给定的条件下,寻找最优解决方案的过程,可能涉及最大化效益、最小化成本等。
    • 调度: 对资源或任务进行合理的分配和安排。

因此,整体来说,这个标题可能指的是一个研究方向或项目,旨在通过考虑热能的量化储存,针对涉及多个地理或功能区域的电–热综合能源系统进行优化调度。这涉及到电和热能的综合利用,以及如何在多区域环境下最有效地分配和利用这些能源。

摘要:多区域电–热综合能源系统(integratedpowerand heatingsystem,IPHS)是包含多个独立供热系统的跨区域电热耦合系统,其供热管网储热能力具有巨大调控潜力。但目前IPHS调度未考虑储热量化和储热主动调控,造成管网热损增加、管道加速老化等诸多问题,严重影响管网储热潜力的灵活利用。因此,该文提出一种考虑量化储热的多区域IPHS优化调度方法。首先,考虑供热管网储热特性和多区域调度的计算效率需求,基于一阶隐式迎风差分改进并简化供热管网模型,建立供热管网的虚拟蓄热罐模型;在此基础上,提出供热系统热储能状态指标(state of thermal storage,SOTS),用于一次管网储热量化,并建立管网储热的量化调控指标;最后,结合1–bin机组组合模型构建多区域IPHS优化调度模型,将管网储热调控目标加入IPHS优化调度目标,并利用混合整数二次规划求解器求解,得到IPHS优化调度方案。算例分析验证了该方法在提升IPHS机组经济性、促进风电消纳、降低热损量等方面的有效性。

这段摘要讨论了针对多区域电–热综合能源系统(IPHS)的优化调度方法,旨在解决目前IPHS调度中未考虑储热量化和主动储热调控所导致的问题。

  1. 系统描述:

    • IPHS 是一个包含多个独立供热系统的电热耦合系统,其供热管网储热能力有潜力进行调节。
    • 问题存在: 目前IPHS调度未考虑储热量化和主动储热调控,导致管网热损增加、管道老化加速等问题,限制了管网储热潜力的有效利用。
  2. 提出方法:

    • 建模改进: 基于一阶隐式迎风差分方法对供热管网模型进行改进和简化,建立了供热管网的虚拟蓄热罐模型,以考虑供热管网的储热特性和多区域调度的计算效率需求。
    • 引入指标: 提出了供热系统热储能状态指标 (SOTS),用于量化管网的储热情况,并建立了管网储热的量化调控指标。
    • 优化模型: 结合了1–bin机组组合模型,构建了多区域IPHS优化调度模型,并将管网储热调控目标整合到IPHS优化调度目标中。最后,利用混合整数二次规划求解器来得到IPHS优化调度方案。
  3. 算例验证:

    • 有效性验证: 通过算例分析证明了这种方法在提升IPHS机组经济性、促进风电消纳以及降低热损量等方面的有效性。

综合来看,这项研究通过引入量化储热和储热主动调控的方法,提出了一种综合考虑供热管网特性和多区域调度需求的优化方案,旨在解决IPHS调度中存在的问题,并证明了该方案的有效性。

关键词:电_热综合能源系统;多区域系统;量化储热;优化调度;

这些关键词涉及能源系统管理和优化的关键概念:

  1. 电-热综合能源系统: 这指的是一种综合利用电力和热能的系统,旨在实现能源的高效利用和互联互通。这种系统可能整合电力和热能生产、传输、储存和使用,通过有效管理和协调这两种能源形式来提高能源利用效率。

  2. 多区域系统: 指的是跨越多个区域或地域范围的系统,这些区域可能在能源生产、需求或供应方面存在差异。在能源管理中,多区域系统需要考虑不同地区的能源特性、需求和传输,以便进行更有效的能源分配和利用。

  3. 量化储热: 意味着对热能储存量进行量化分析和管理。这可能涉及衡量热能的储存容量、储存效率以及在系统中存储和释放热能的方法。通过量化储热,可以更有效地利用可再生能源或尖峰时段产生的能源,并在需要时释放。

  4. 优化调度: 指通过算法、模型或技术对系统进行智能调度和管理,以最大程度地提高系统效率、降低成本、满足能源需求,并考虑到各种约束条件。在能源系统中,优化调度可以指调整能源生产、传输和消费的时间、量和方式,以达到系统运行的最佳状态。

综合来看,这些关键词涉及到整合不同形式能源、管理跨区域系统、量化能源储存以及通过优化调度来提高能源系统效率的重要概念。在电力和热能管理中,这些概念都是为了更有效地利用资源、降低能源成本、减少环境影响并确保能源供应的可靠性。

仿真算例:

本文选取 IEEE-118 节点电力系统算例,系统 中29个节点为传统火电机组,6个节点为风电机组, 19 个节点为 CHP 机组,CHP 机组装机容量在火电 机组中占比 41.6%,风电机组在发电机组中占比为 19%,如图 4 所示。每个 CHP 机组对应一个区域供 热系统,分别选取 6 节点、28 节点以及 44 节点供 热系统算例[7]进行复用,并设置管网水温上下限, 供水管网温度上下限 Ts,max/T s,min 为 110℃/80℃,回 水管网温度上下限 T r,max/T r,min 为 70℃/40℃。供热 系统参数如附录 A 表 A1 所示。所有供热系统在 0 时的 SOTS 设为 50%, min OTSk S 均为 0%, max OTSk S 均为 100%, max OTSk S 均设为 50%。IPHS 的电、热负荷以及风电预测出力如附录 A 图 A1 所示,调度周期 24h,调度时间分辨率为 1h。为验证本文调度方法 的有效性,算例设置 3 个场景: 1)场景 I: 采用以热定电运行模式,调度模型为(32),并 将其中约束(4)—(7),(13),(14)替换为式(30); 2)场景Ⅱ: 采用本文调度方法,调度模型为(32),仅考虑 热电解耦,不考虑供热管网储热量的协同调控,忽略协同调控惩罚项的影响,罚因子设为 0; 3)场景Ⅲ: 采用本文调度方法,调度模型为(32),考虑供 热管网储热量的协同调控,将罚因子设为 103 ;

仿真程序复现思路:

复现这个仿真涉及以下步骤:

  1. 建模:

    • 使用电力系统仿真工具,如MATLAB/Simulink或PowerWorld等,构建 IEEE-118 节点电力系统模型。定义每个节点的特性,包括传统火电机组、风电机组和CHP机组等。
  2. 区域供热系统建模:

    • 为每个CHP机组创建相应的区域供热系统模型。选择并复用6、28和44节点的供热系统算例,并设置管网水温上下限、供水和回水管网温度上下限。
  3. IPHS负荷和风电预测建模:

    • 根据文中提到的IPHS的电、热负荷以及风电预测出力,使用合适的数学模型进行建模。这可能涉及创建时间序列模型或使用已知数据进行插值。
  4. 调度模型设置:

    • 为每个场景设置调度模型。在场景 I 中,采用以热定电运行模式,替换特定约束为新的式(30)。在场景Ⅱ中,考虑热电解耦,但不考虑供热管网储热量的协同调控。在场景Ⅲ中,考虑供热管网储热量的协同调控,并设置罚因子。
  5. 调度周期和分辨率设置:

    • 设置调度周期为24小时,调度时间分辨率为1小时,以匹配仿真的时间尺度。
  6. 运行仿真:

    • 编写仿真脚本,将上述模型和参数传入仿真工具。运行三个场景的仿真,并记录相关输出数据。
  7. 结果分析:

    • 分析仿真结果,比较场景 I、Ⅱ 和Ⅲ 的性能。这可能涉及评估电力系统的稳定性、经济性和环境影响等方面的指标。

以下是一个简化的仿真思路的伪代码表示(使用Python作为伪代码的编程语言表示):

import pandas as pd
import numpy as np
from scipy.optimize import minimize# 步骤1:建模
def build_power_system_model():# 实现电力系统的建模passdef build_heating_systems():# 实现供热系统的建模pass# 步骤2:区域供热系统建模
def build_heating_system_model(chp_unit):# 实现单个供热系统的建模pass# 步骤3:IPHS负荷和风电预测建模
def build_iphs_load_model():# 实现IPHS负荷建模passdef build_wind_power_forecast():# 实现风电预测建模pass# 步骤4:调度模型设置
def set_dispatch_model(scenario, heat_decoupling=False, penalty_factor=0):# 实现调度模型设置,可能使用数学规划库如scipy.optimizepass# 步骤6:运行仿真
def run_simulation(dispatch_model, dispatch_cycle, time_resolution):# 实现仿真运行,可能调用优化算法进行求解pass# 步骤7:结果分析
def analyze_results(results_scenario_I, results_scenario_II, results_scenario_III):# 实现仿真结果的分析pass# 主程序
if __name__ == "__main__":# 步骤1:建模power_system = build_power_system_model()heating_systems = build_heating_systems()# 步骤2:区域供热系统建模for chp_unit in heating_systems:build_heating_system_model(chp_unit)# 步骤3:IPHS负荷和风电预测建模iphs_load = build_iphs_load_model()wind_power_forecast = build_wind_power_forecast()# 步骤4:调度模型设置scenario_I_model = set_dispatch_model("Scenario I", constraints_replace=True)scenario_II_model = set_dispatch_model("Scenario II", heat_decoupling=True, penalty_factor=0)scenario_III_model = set_dispatch_model("Scenario III", heat_decoupling=True, penalty_factor=1e3)# 步骤5:调度周期和分辨率设置dispatch_cycle = 24  # hourstime_resolution = 1  # hour# 步骤6:运行仿真results_scenario_I = run_simulation(scenario_I_model, dispatch_cycle, time_resolution)results_scenario_II = run_simulation(scenario_II_model, dispatch_cycle, time_resolution)results_scenario_III = run_simulation(scenario_III_model, dispatch_cycle, time_resolution)# 步骤7:结果分析analyze_results(results_scenario_I, results_scenario_II, results_scenario_III)

请注意,这只是一个简化的示例,并没有具体的优化算法或电力系统建模的详细内容。实际的仿真程序可能需要更多的细节和精确性,并可能使用专业的仿真工具和优化库。

这篇关于文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑量化储热的多区域电–热综合能源系统优化调度》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/453087

相关文章

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

EMLOG程序单页友链和标签增加美化

单页友联效果图: 标签页面效果图: 源码介绍 EMLOG单页友情链接和TAG标签,友链单页文件代码main{width: 58%;是设置宽度 自己把设置成与您的网站宽度一样,如果自适应就填写100%,TAG文件不用修改 安装方法:把Links.php和tag.php上传到网站根目录即可,访问 域名/Links.php、域名/tag.php 所有模板适用,代码就不粘贴出来,已经打

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中,不同电脑的配置和操作系统(如Win11与Win7)可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行,需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下,使LabVIEW开发的程序保持稳定运行的有效策略。 LabVIEW版本兼容性 LabVIEW各版本对不同操作系统的支持存在差异。因此,在开发程序时,尽量使用