【毕业设计】基于雷达与深度学习的摔倒检测——微多普勒效应

2023-12-04 06:52

本文主要是介绍【毕业设计】基于雷达与深度学习的摔倒检测——微多普勒效应,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

运动物体的微多普勒效应为人体动作识别提供了可能,基于雷达的居家检测具有良好的隐私保护性,且不易受环境因素影响(如光照、温度等),近年来已受到国内外学者的广泛关注。由于雷达信号的非平稳特性,通过短时傅里叶变换或者小波变换等数字信号处理方法,揭示人体运动情况的多普勒与微多普勒特征已经能够很好地显示出来,这为基于雷达地人体摔倒检测提供了理论基础。

目录

1 多普勒效应

2 微多普勒效应

3 微多普勒信号分析


1 多普勒效应

        根据波动理论,当波源与观察者相互靠近或者相互远离时,观察者接收到的频率(以下简称接收频率)与波源频率不一致,这种现象叫做多普勒效应。根据波源与观察者的相对运动状态,多普勒效应可以分为以下两种情况:

(1)波源静止,观察者相对介质运动,接收频率与波源频率满足:

f_{r} = (v \pm v_0)/v \times f_{s}

其中 v 为波在介质中的传播速度,v0 为观察者的径向移动速度,若观察者靠近波源则取“+”号,反之取“-”号。

(2)观察者静止,波源相对介质运动,接收频率与波源频率满足:

f_{r} = v / (v \mp v_{s}) \times f_{s}

其中 vs 为波源的径向移动速度,若波源向观察者接近则取“-”号,反之取“+”号。

多普勒效应引起的接收频率和波源频率之差,定义为多普勒频移,即

\Delta f = f_{r} - f_{s}

多普勒频移可以通过对接收信号的频谱分析得到。

        应用多普勒效应的雷达称为多普勒雷达(Doppler Radar),在速度相同的情况下,信号频率 f_{t} 越高,多普勒效应越显著。

f_{d} \approx 2 v f_{t}/c

2 微多普勒效应

        在波源频率已知的情况下,运动物体速度的测量可以转换成多普勒频移的测量。或者说,多普勒效应可以用于测量运动物体的速度,例如行驶中的汽车。实际上,行驶中的汽车等物体在物理上被等效为一个刚体。

        然而在基于雷达的人体摔倒检测中,人体不能被视为一个刚体。这是因为人在摔倒或者做其他动作时, 除人体躯干运动之外,通常还伴随有手臂的摆动、头部的微小晃动等运动,这些运动也会在雷达时频谱图中引入多普勒频率。这种由非刚体自身结构的振动或转动而引起的多普勒效应,被称为微多普勒效应(Micro-Doppler Effect)。

If the object or any structural component of the object has an oscillatory motion in addition to the bulk motion of the object, the oscillation will induce additional frequency modulation on the returned signal and generates side bands about the Doppler shifted frequency of the transmitted signal due to the bulk motion. The additional Doppler modulation is called the micro-Doppler effect.

3 微多普勒信号分析

        人体雷达信号的多普勒特征与微多普勒特征,分别揭示了人体躯干的运动情况和除躯干外其他部位的运动情况。然而,微多普勒信号在分析过程中,也存在着一些挑战。

(1)强非平稳性,傅里叶频谱不能反映微多普勒效应的真实特征;

(2)多分量相互交叉,频带集中,难于分离;

(3)特征微弱,易被噪声淹没。

How to effectively decompose micro-Doppler signatures into mono-components that relate to the physical structural parts of a target and how to measure the embedded kinematic/structural information from mono-component signatures are still open issues.

        对于非平稳信号,可以采用时频变换和信号分解的分析方法。时频变换方法包括短时傅里叶变换(Short Time Fourier Transform, STFT)和连续小波变换(Continuous wavelet transform, CWT).

短时傅里叶变换

STFT_{x}(\tau , \omega) = \int^{\infty} _{-\infty} x(t) g(t-\tau) e^{-j\omega t} dt

连续小波变换

CWT_{x} (a, b; \psi) = 1/\sqrt{a} \int ^{\infty} _{-\infty} x(t) \psi((t-b)/a) dt

        通过短时傅里叶变换或者小波变换等数字信号处理方法,揭示人体运动情况的多普勒特征和微多普勒特征已经能够很好地显示出来,这为基于雷达的人体摔倒检测提供了理论基础。

这篇关于【毕业设计】基于雷达与深度学习的摔倒检测——微多普勒效应的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452548

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]