Python 全栈体系【四阶】(一)

2023-12-04 04:36
文章标签 python 体系 全栈 四阶

本文主要是介绍Python 全栈体系【四阶】(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

四阶:机器学习 - 深度学习

第一章 numpy

一、numpy 概述

Numerical Python,数值的 Python,补充了 Python 语言所欠缺的数值计算能力。

Numpy 是其它数据分析及机器学习库的底层库。

Numpy 完全标准 C 语言实现,运行效率充分优化。

Numpy 开源免费。

1. numpy 历史

1995 年,Numeric,Python 语言数值计算扩充。

2001 年,Scipy->Numarray,多维数组运算。

2005 年,Numeric+Numarray->Numpy。

2006 年,Numpy 脱离 Scipy 成为独立的项目。

2. numpy 的核心:多维数组 + 数值计算

代码简洁:减少 Python 代码中的循环。

底层实现:厚内核(C)+薄接口(Python),保证性能。

二、numpy 基础

ndarray 数组

1. 内存中的 ndarray 对象

元数据(metadata)

  • 存储对目标数组的描述信息,如:ndim、dimensions、dtype、data 等。

实际数据

  • 完整的数组数据

  • 将实际数据与元数据分开存放,一方面提高了内存空间的使用效率,另一方面减少对实际数据的访问频率,提高性能。

2. ndarray 数组对象的特点

Numpy 数组是同质数组,即所有元素的数据类型必须相同

Numpy 数组的下标从 0 开始,最后一个元素的下标为数组长度减 1

3. ndarray 数组对象的创建

np.array(任何可被解释为 Numpy 数组的逻辑结构)

import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
print(a) # [1 2 3 4 5 6]

np.arange(起始值(0),终止值,步长(1))

import numpy as np
a = np.arange(0, 5, 1)
print(a) # [0 1 2 3 4]
b = np.arange(0, 10, 2)
print(b) # [0 2 4 6 8]

np.zeros(数组元素个数, dtype=‘类型’)

import numpy as np
a = np.zeros(10)
print(a) # [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

np.ones(数组元素个数, dtype=‘类型’)

import numpy as np
a = np.ones(10)
print(a) # [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
4. ndarray 对象属性的基本操作

数组的维度: np.ndarray.shape

import numpy as np
ary = np.array([1, 2, 3, 4, 5, 6])
print(type(ary), ary, ary.shape) # <class 'numpy.ndarray'> [1 2 3 4 5 6] (6,)
#二维数组
ary = np.array([[1,2,3,4],[5,6,7,8]
])
print(type(ary), ary, ary.shape)
"""
<class 'numpy.ndarray'> [[1 2 3 4][5 6 7 8]] (2, 4)
"""

元素的类型: np.ndarray.dtype

import numpy as np
ary = np.array([1, 2, 3, 4, 5, 6])
print(type(ary), ary, ary.dtype) # <class 'numpy.ndarray'> [1 2 3 4 5 6] int64
#转换ary元素的类型
b = ary.astype(float)
print(type(b), b, b.dtype)	# <class 'numpy.ndarray'> [1. 2. 3. 4. 5. 6.] float64
#转换ary元素的类型
c = ary.astype(str)
print(type(c), c, c.dtype)	# <class 'numpy.ndarray'> ['1' '2' '3' '4' '5' '6'] <U21

数组元素的个数: np.ndarray.size

import numpy as np
ary = np.array([[1,2,3,4],[5,6,7,8]
])
#观察维度,size,len的区别
print(ary.shape, ary.size, len(ary)) # (2, 4) 8 2

数组元素索引(下标)

  • 数组对象[…, 页号, 行号, 列号]

  • 下标从 0 开始,到数组 len-1 结束。

import numpy as np
a = np.array([[[1, 2],[3, 4]],[[5, 6],[7, 8]]])
print(a, a.shape)
print(a[0])
print(a[0][0])
print(a[0][0][0])
print(a[0, 0, 0])
for i in range(a.shape[0]):for j in range(a.shape[1]):for k in range(a.shape[2]):print(a[i, j, k])"""
[[[1 2][3 4]][[5 6][7 8]]] (2, 2, 2)
[[1 2][3 4]]
[1 2]
1
1
1
2
3
4
5
6
7
8
"""
5. ndarray 对象属性操作详解

Numpy 的内部基本数据类型

类型名类型表示符
布尔型bool_
有符号整数型int8(-128~127) / int16 / int32 / int64
无符号整数型uint8(0~255) / uint16 / uint32 / uint64
浮点型float16 / float32 / float64
复数型complex64 / complex128
字串型str_,每个字符用 32 位 Unicode 编码表示
日期类型datetime64

自定义复合类型

列与列之间可以是不同的类型,但是在同一列内,类型必须

# 自定义复合类型
import numpy as npdata=[('zs', [90, 80, 85], 15),('ls', [92, 81, 83], 16),('ww', [95, 85, 95], 15)
]
#第一种设置dtype的方式
a = np.array(data, dtype='U3, 3int32, int32')
print(a)
print(a[0]['f0'], ":", a[1]['f1'])
print("=====================================")#第二种设置dtype的方式
c = np.array(data, dtype={'names': ['name', 'scores', 'ages'],'formats': ['U3', '3int32', 'int32']})
print(c[0]['name'], ":", c[0]['scores'], ":", c.itemsize)
print("=====================================")#测试日期类型数组
f = np.array(['2011', '2012-01-01', '2013-01-01 01:01:01','2011-02-01'])
f = f.astype('M8[D]')
f = f.astype('i4')
print(f[3]-f[0])f.astype('bool')"""
[('zs', [90, 80, 85], 15) ('ls', [92, 81, 83], 16)('ww', [95, 85, 95], 15)]
zs : [92 81 83]
=====================================
zs : [90 80 85] : 28
=====================================
31
"""

类型字符码

类型字符码
np.bool_?
np.int8/16/32/64i1 / i2 / i4 / i8
np.uint8/16/32/64u1 / u2 / u4 / u8
np.float/16/32/64f2 / f4 / f8
np.complex64/128c8 / c16
np.str_U
np.datetime64M8[Y] M8[M] M8[D] M8[h] M8[m] M8[s]
  • 不会修改原始数据的维度
    • 视图变维
      • 数据共享
    • 复制变维
      • 数据独立
  • 直接修改原始数据的维度
    • 就地变维
5.1 ndarray 数组维度操作

视图变维(数据共享): reshape() 与 ravel()

import numpy as np
a = np.arange(1, 9)
print(a)		# [1 2 3 4 5 6 7 8]
b = a.reshape(2, 4)	#视图变维  : 变为2行4列的二维数组
print(b)
c = b.reshape(2, 2, 2) #视图变维    变为2页2行2列的三维数组
print(c)
d = c.ravel()	#视图变维	变为1维数组
print(d)
"""
[1 2 3 4 5 6 7 8]
[[1 2 3 4][5 6 7 8]]
[[[1 2][3 4]][[5 6][7 8]]]
[1 2 3 4 5 6 7 8]
"""

复制变维(数据独立): flatten()

e = c.flatten()
print(e)
a += 10
print(a, e, sep='\n')
"""
[1 2 3 4 5 6 7 8]
[11 12 13 14 15 16 17 18]
[1 2 3 4 5 6 7 8]
"""

就地变维:直接改变原数组对象的维度,不返回新数组

a.shape = (2, 4)
print(a)
a.resize(2, 2, 2)
print(a)
"""
[[11 12 13 14][15 16 17 18]]
[[[11 12][13 14]][[15 16][17 18]]]
"""
5.2 ndarray 数组索引操作,切片

数组对象切片的参数设置与列表切面参数类似

  • 步长+:默认切从首到尾
  • 步长-:默认切从尾到首

数组对象[起始位置:终止位置:步长, …]

  • 默认位置步长:1

三维数组[页的索引,行的索引,列的索引]

三维数组[页的切片,行的切片,列的切片]

import numpy as np
a = np.arange(1, 10)
print(a)  # 1 2 3 4 5 6 7 8 9
print(a[:3])  # 1 2 3
print(a[3:6])   # 4 5 6
print(a[6:])  # 7 8 9
print(a[::-1])  # 9 8 7 6 5 4 3 2 1
print(a[:-4:-1])  # 9 8 7
print(a[-4:-7:-1])  # 6 5 4
print(a[-7::-1])  # 3 2 1
print(a[::])  # 1 2 3 4 5 6 7 8 9
print(a[:])  # 1 2 3 4 5 6 7 8 9
print(a[::3])  # 1 4 7
print(a[1::3])  # 2 5 8
print(a[2::3])  # 3 6 9

多维数组的切片操作

import numpy as np
a = np.arange(1, 28)
a.resize(3,3,3)
print(a)
#切出1页
print(a[1, :, :])
#切出所有页的1行
print(a[:, 1, :])
#切出0页的1行1列
print(a[0, :, 1])"""
[[[ 1  2  3][ 4  5  6][ 7  8  9]][[10 11 12][13 14 15][16 17 18]][[19 20 21][22 23 24][25 26 27]]]
[[10 11 12][13 14 15][16 17 18]]
[[ 4  5  6][13 14 15][22 23 24]]
[2 5 8]
"""

ndarray 数组的掩码操作

import numpy as np
a = np.arange(1, 10)
mask = [True, False,True, False,True, False,True, False,True]
print(a[mask])	# [1 3 5 7 9]
6. 多维数组的组合与拆分

垂直方向操作:

import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 垂直方向完成组合操作,生成新数组
c = np.vstack((a, b))
# 垂直方向完成拆分操作,生成两个数组
d, e = np.vsplit(c, 2)
print(a)
print(b)
print(c)
print(d)
print(e)
"""
[[1 2 3][4 5 6]]
[[ 7  8  9][10 11 12]]
[[ 1  2  3][ 4  5  6][ 7  8  9][10 11 12]]
[[1 2 3][4 5 6]]
[[ 7  8  9][10 11 12]]
"""

水平方向操作:

import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 水平方向完成组合操作,生成新数组
c = np.hstack((a, b))
# 水平方向完成拆分操作,生成两个数组
d, e = np.hsplit(c, 2)
print(a)
print(b)
print(c)
print(d)
"""
[[1 2 3][4 5 6]]
[[ 7  8  9][10 11 12]]
[[ 1  2  3  7  8  9][ 4  5  6 10 11 12]]
[[1 2 3][4 5 6]]
[[ 7  8  9][10 11 12]]
"""

深度方向操作:(3 维)

import numpy as np
a = np.arange(1, 7).reshape(2, 3)
b = np.arange(7, 13).reshape(2, 3)
# 深度方向(3维)完成组合操作,生成新数组
i = np.dstack((a, b))
# 深度方向(3维)完成拆分操作,生成两个数组
k, l = np.dsplit(i, 2)
"""
[[1 2 3][4 5 6]]
[[ 7  8  9][10 11 12]]
[[[ 1  7][ 2  8][ 3  9]][[ 4 10][ 5 11][ 6 12]]]
[[[1][2][3]][[4][5][6]]]
[[[ 7][ 8][ 9]][[10][11][12]]]
"""

多维数组组合与拆分的相关函数:

# 通过axis作为关键字参数指定组合的方向,取值如下:
# 若待组合的数组都是二维数组:
#	0: 垂直方向组合
#	1: 水平方向组合
# 若待组合的数组都是三维数组:
#	0: 垂直方向组合
#	1: 水平方向组合
#	2: 深度方向组合
res = np.concatenate((a, b), axis=0)
print(res)
# 通过给出的数组与要拆分的份数,按照某个方向进行拆分,axis的取值同上
result = np.split(c, 2, axis=0)
print(result)
"""
[[ 1  2  3][ 4  5  6][ 7  8  9][10 11 12]]
[array([[1, 2, 3],[4, 5, 6]]), array([[ 7,  8,  9],[10, 11, 12]])]
"""
7. ndarray 类的其他属性

shape - 维度

dtype - 元素类型

size - 元素数量

ndim - 维数,

itemsize - 元素字节数

nbytes - 总字节数 = size x itemsize

real - 复数数组的实部数组

imag - 复数数组的虚部数组

T - 数组对象的转置视图

flat - 扁平迭代器

import numpy as np
a = np.array([[1 + 1j, 2 + 4j, 3 + 7j],[4 + 2j, 5 + 5j, 6 + 8j],[7 + 3j, 8 + 6j, 9 + 9j]])
print(a.shape)
print(a.dtype)
print(a.ndim)
print(a.size)
print(a.itemsize)
print(a.nbytes)
print(a.real, a.imag, sep='\n')
print(a.T)
print([elem for elem in a.flat])
b = a.tolist()
print(b)"""
(3, 3)
complex128
2
9
16
144
[[1. 2. 3.][4. 5. 6.][7. 8. 9.]]
[[1. 4. 7.][2. 5. 8.][3. 6. 9.]]
[[1.+1.j 4.+2.j 7.+3.j][2.+4.j 5.+5.j 8.+6.j][3.+7.j 6.+8.j 9.+9.j]]
[(1+1j), (2+4j), (3+7j), (4+2j), (5+5j), (6+8j), (7+3j), (8+6j), (9+9j)]
[[(1+1j), (2+4j), (3+7j)], [(4+2j), (5+5j), (6+8j)], [(7+3j), (8+6j), (9+9j)]]
"""

这篇关于Python 全栈体系【四阶】(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452110

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操