SHAP(五):使用 XGBoost 进行人口普查收入分类

2023-12-03 23:15

本文主要是介绍SHAP(五):使用 XGBoost 进行人口普查收入分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SHAP(五):使用 XGBoost 进行人口普查收入分类

本笔记本演示了如何使用 XGBoost 预测个人年收入超过 5 万美元的概率。 它使用标准 UCI 成人收入数据集。 要下载此笔记本的副本,请访问 github。

XGBoost 等梯度增强机方法对于具有多种形式的表格样式输入数据的此类预测问题来说是最先进的。 Tree SHAP(arXiv 论文)允许精确计算树集成方法的 SHAP 值,并已直接集成到 C++ XGBoost 代码库中。 这允许快速精确计算 SHAP 值,无需采样,也无需提供背景数据集(因为背景是从树木的覆盖范围推断出来的)。

在这里,我们演示如何使用 SHAP 值来理解 XGBoost 模型预测。

import matplotlib.pylab as pl
import numpy as np
import xgboost
from sklearn.model_selection import train_test_splitimport shap# print the JS visualization code to the notebook
shap.initjs()

1.加载数据集

X, y = shap.datasets.adult()
X_display, y_display = shap.datasets.adult(display=True)# create a train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
d_train = xgboost.DMatrix(X_train, label=y_train)
d_test = xgboost.DMatrix(X_test, label=y_test)

2.训练模型

params = {"eta": 0.01,"objective": "binary:logistic","subsample": 0.5,"base_score": np.mean(y_train),"eval_metric": "logloss",
}
model = xgboost.train(params,d_train,5000,evals=[(d_test, "test")],verbose_eval=100,early_stopping_rounds=20,
)
[0]	test-logloss:0.54663
[100]	test-logloss:0.36373
[200]	test-logloss:0.31793
[300]	test-logloss:0.30061
[400]	test-logloss:0.29207
[500]	test-logloss:0.28678
[600]	test-logloss:0.28381
[700]	test-logloss:0.28181
[800]	test-logloss:0.28064
[900]	test-logloss:0.27992
[1000]	test-logloss:0.27928
[1019]	test-logloss:0.27935

3.经典特征归因

在这里,我们尝试 XGBoost 附带的全局特征重要性计算。 请注意,它们都是相互矛盾的,这激励了 SHAP 值的使用,因为它们具有一致性保证(意味着它们将正确排序特征)。

xgboost.plot_importance(model)
pl.title("xgboost.plot_importance(model)")
pl.show()


在这里插入图片描述

xgboost.plot_importance(model, importance_type="cover")
pl.title('xgboost.plot_importance(model, importance_type="cover")')
pl.show()


在这里插入图片描述

xgboost.plot_importance(model, importance_type="gain")
pl.title('xgboost.plot_importance(model, importance_type="gain")')
pl.show()


在这里插入图片描述

4,解释预测

在这里,我们使用集成到 XGBoost 中的 Tree SHAP 实现来解释整个数据集(32561 个样本)。

# this takes a minute or two since we are explaining over 30 thousand samples in a model with over a thousand trees
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)

4.1 可视化单个预测

请注意,我们使用“显示值”数据框,因此我们得到了漂亮的字符串而不是类别代码。

shap.force_plot(explainer.expected_value, shap_values[0, :], X_display.iloc[0, :])

在这里插入图片描述

4.2 将许多预测可视化

为了让浏览器满意,我们只可视化 1,000 个人。

shap.force_plot(explainer.expected_value, shap_values[:1000, :], X_display.iloc[:1000, :]
)

在这里插入图片描述

5.平均重要性条形图

这取整个数据集中 SHAP 值大小的平均值,并将其绘制为简单的条形图。

shap.summary_plot(shap_values, X_display, plot_type="bar")


在这里插入图片描述

6.SHAP 概要图

我们没有使用典型的特征重要性条形图,而是使用每个特征的 SHAP 值的密度散点图来确定每个特征对验证数据集中个体的模型输出有多大影响。 特征按所有样本的 SHAP 值大小之和排序。 有趣的是,关系特征比资本收益特征具有更大的总体模型影响,但对于那些资本收益重要的样本,它比年龄具有更大的影响。 换句话说,资本收益对少数预测的影响较大,而年龄对所有预测的影响较小。

请注意,当散点不适合在线时,它们会堆积起来以显示密度,每个点的颜色代表该个体的特征值。

shap.summary_plot(shap_values, X)


在这里插入图片描述

7.SHAP 相关图

SHAP 依赖图显示单个特征对整个数据集的影响。 他们绘制了多个样本中某个特征的值与该特征的 SHA 值的关系图。 SHAP 依赖图与部分依赖图类似,但考虑了特征中存在的交互效应,并且仅在数据支持的输入空间区域中定义。 单个特征值处的 SHAP 值的垂直分散是由交互效应驱动的,并且选择另一个特征进行着色以突出可能的交互。

for name in X_train.columns:shap.dependence_plot(name, shap_values, X, display_features=X_display)


在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

8.简单的监督聚类

按 shap_values 对人们进行聚类会导致与手头的预测任务相关的组(在本例中是他们的收入潜力)。

from sklearn.decomposition import PCA
from sklearn.manifold import TSNEshap_pca50 = PCA(n_components=12).fit_transform(shap_values[:1000, :])
shap_embedded = TSNE(n_components=2, perplexity=50).fit_transform(shap_values[:1000, :])
from matplotlib.colors import LinearSegmentedColormapcdict1 = {"red": ((0.0, 0.11764705882352941, 0.11764705882352941),(1.0, 0.9607843137254902, 0.9607843137254902),),"green": ((0.0, 0.5333333333333333, 0.5333333333333333),(1.0, 0.15294117647058825, 0.15294117647058825),),"blue": ((0.0, 0.8980392156862745, 0.8980392156862745),(1.0, 0.3411764705882353, 0.3411764705882353),),"alpha": ((0.0, 1, 1), (0.5, 1, 1), (1.0, 1, 1)),
}  # #1E88E5 -> #ff0052
red_blue_solid = LinearSegmentedColormap("RedBlue", cdict1)
f = pl.figure(figsize=(5, 5))
pl.scatter(shap_embedded[:, 0],shap_embedded[:, 1],c=shap_values[:1000, :].sum(1).astype(np.float64),linewidth=0,alpha=1.0,cmap=red_blue_solid,
)
cb = pl.colorbar(label="Log odds of making > $50K", aspect=40, orientation="horizontal")
cb.set_alpha(1)
cb.outline.set_linewidth(0)
cb.ax.tick_params("x", length=0)
cb.ax.xaxis.set_label_position("top")
pl.gca().axis("off")
pl.show()


在这里插入图片描述

for feature in ["Relationship", "Capital Gain", "Capital Loss"]:f = pl.figure(figsize=(5, 5))pl.scatter(shap_embedded[:, 0],shap_embedded[:, 1],c=X[feature].values[:1000].astype(np.float64),linewidth=0,alpha=1.0,cmap=red_blue_solid,)cb = pl.colorbar(label=feature, aspect=40, orientation="horizontal")cb.set_alpha(1)cb.outline.set_linewidth(0)cb.ax.tick_params("x", length=0)cb.ax.xaxis.set_label_position("top")pl.gca().axis("off")pl.show()


在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

训练每棵树只有两个叶子的模型,因此特征之间没有交互项

强制模型没有交互项意味着某个特征对结果的影响不依赖于任何其他特征的值。 这反映在下面的 SHAP 相关图中,因为没有垂直扩展。 垂直分布反映了一个特征的单个值可能对模型输出产生不同的影响,具体取决于个体呈现的其他特征的上下文。 然而,对于没有交互项的模型,无论个体可能具有哪些其他属性,特征总是具有相同的影响。

与传统的部分相关图相比,SHAP 相关图的优点之一是能够区分具有交互项和不具有交互项的模型。 换句话说,SHAP 相关图通过给定特征值处散点图的垂直方差给出了交互项大小的概念。

# train final model on the full data set
params = {"eta": 0.05,"max_depth": 1,"objective": "binary:logistic","subsample": 0.5,"base_score": np.mean(y_train),"eval_metric": "logloss",
}
model_ind = xgboost.train(params,d_train,5000,evals=[(d_test, "test")],verbose_eval=100,early_stopping_rounds=20,
)
[0]	test-logloss:0.54113
[100]	test-logloss:0.35499
[200]	test-logloss:0.32848
[300]	test-logloss:0.31901
[400]	test-logloss:0.31331
[500]	test-logloss:0.30930
[600]	test-logloss:0.30619
[700]	test-logloss:0.30371
[800]	test-logloss:0.30184
[900]	test-logloss:0.30035
[1000]	test-logloss:0.29913
[1100]	test-logloss:0.29796
[1200]	test-logloss:0.29695
[1300]	test-logloss:0.29606
[1400]	test-logloss:0.29525
[1500]	test-logloss:0.29471
[1565]	test-logloss:0.29439
shap_values_ind = shap.TreeExplainer(model_ind).shap_values(X)

请注意,下面的交互颜色条对于该模型来说没有意义,因为它没有交互。

for name in X_train.columns:shap.dependence_plot(name, shap_values_ind, X, display_features=X_display)
invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

这篇关于SHAP(五):使用 XGBoost 进行人口普查收入分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451224

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出