SHAP(五):使用 XGBoost 进行人口普查收入分类

2023-12-03 23:15

本文主要是介绍SHAP(五):使用 XGBoost 进行人口普查收入分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SHAP(五):使用 XGBoost 进行人口普查收入分类

本笔记本演示了如何使用 XGBoost 预测个人年收入超过 5 万美元的概率。 它使用标准 UCI 成人收入数据集。 要下载此笔记本的副本,请访问 github。

XGBoost 等梯度增强机方法对于具有多种形式的表格样式输入数据的此类预测问题来说是最先进的。 Tree SHAP(arXiv 论文)允许精确计算树集成方法的 SHAP 值,并已直接集成到 C++ XGBoost 代码库中。 这允许快速精确计算 SHAP 值,无需采样,也无需提供背景数据集(因为背景是从树木的覆盖范围推断出来的)。

在这里,我们演示如何使用 SHAP 值来理解 XGBoost 模型预测。

import matplotlib.pylab as pl
import numpy as np
import xgboost
from sklearn.model_selection import train_test_splitimport shap# print the JS visualization code to the notebook
shap.initjs()

1.加载数据集

X, y = shap.datasets.adult()
X_display, y_display = shap.datasets.adult(display=True)# create a train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
d_train = xgboost.DMatrix(X_train, label=y_train)
d_test = xgboost.DMatrix(X_test, label=y_test)

2.训练模型

params = {"eta": 0.01,"objective": "binary:logistic","subsample": 0.5,"base_score": np.mean(y_train),"eval_metric": "logloss",
}
model = xgboost.train(params,d_train,5000,evals=[(d_test, "test")],verbose_eval=100,early_stopping_rounds=20,
)
[0]	test-logloss:0.54663
[100]	test-logloss:0.36373
[200]	test-logloss:0.31793
[300]	test-logloss:0.30061
[400]	test-logloss:0.29207
[500]	test-logloss:0.28678
[600]	test-logloss:0.28381
[700]	test-logloss:0.28181
[800]	test-logloss:0.28064
[900]	test-logloss:0.27992
[1000]	test-logloss:0.27928
[1019]	test-logloss:0.27935

3.经典特征归因

在这里,我们尝试 XGBoost 附带的全局特征重要性计算。 请注意,它们都是相互矛盾的,这激励了 SHAP 值的使用,因为它们具有一致性保证(意味着它们将正确排序特征)。

xgboost.plot_importance(model)
pl.title("xgboost.plot_importance(model)")
pl.show()


在这里插入图片描述

xgboost.plot_importance(model, importance_type="cover")
pl.title('xgboost.plot_importance(model, importance_type="cover")')
pl.show()


在这里插入图片描述

xgboost.plot_importance(model, importance_type="gain")
pl.title('xgboost.plot_importance(model, importance_type="gain")')
pl.show()


在这里插入图片描述

4,解释预测

在这里,我们使用集成到 XGBoost 中的 Tree SHAP 实现来解释整个数据集(32561 个样本)。

# this takes a minute or two since we are explaining over 30 thousand samples in a model with over a thousand trees
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)

4.1 可视化单个预测

请注意,我们使用“显示值”数据框,因此我们得到了漂亮的字符串而不是类别代码。

shap.force_plot(explainer.expected_value, shap_values[0, :], X_display.iloc[0, :])

在这里插入图片描述

4.2 将许多预测可视化

为了让浏览器满意,我们只可视化 1,000 个人。

shap.force_plot(explainer.expected_value, shap_values[:1000, :], X_display.iloc[:1000, :]
)

在这里插入图片描述

5.平均重要性条形图

这取整个数据集中 SHAP 值大小的平均值,并将其绘制为简单的条形图。

shap.summary_plot(shap_values, X_display, plot_type="bar")


在这里插入图片描述

6.SHAP 概要图

我们没有使用典型的特征重要性条形图,而是使用每个特征的 SHAP 值的密度散点图来确定每个特征对验证数据集中个体的模型输出有多大影响。 特征按所有样本的 SHAP 值大小之和排序。 有趣的是,关系特征比资本收益特征具有更大的总体模型影响,但对于那些资本收益重要的样本,它比年龄具有更大的影响。 换句话说,资本收益对少数预测的影响较大,而年龄对所有预测的影响较小。

请注意,当散点不适合在线时,它们会堆积起来以显示密度,每个点的颜色代表该个体的特征值。

shap.summary_plot(shap_values, X)


在这里插入图片描述

7.SHAP 相关图

SHAP 依赖图显示单个特征对整个数据集的影响。 他们绘制了多个样本中某个特征的值与该特征的 SHA 值的关系图。 SHAP 依赖图与部分依赖图类似,但考虑了特征中存在的交互效应,并且仅在数据支持的输入空间区域中定义。 单个特征值处的 SHAP 值的垂直分散是由交互效应驱动的,并且选择另一个特征进行着色以突出可能的交互。

for name in X_train.columns:shap.dependence_plot(name, shap_values, X, display_features=X_display)


在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

8.简单的监督聚类

按 shap_values 对人们进行聚类会导致与手头的预测任务相关的组(在本例中是他们的收入潜力)。

from sklearn.decomposition import PCA
from sklearn.manifold import TSNEshap_pca50 = PCA(n_components=12).fit_transform(shap_values[:1000, :])
shap_embedded = TSNE(n_components=2, perplexity=50).fit_transform(shap_values[:1000, :])
from matplotlib.colors import LinearSegmentedColormapcdict1 = {"red": ((0.0, 0.11764705882352941, 0.11764705882352941),(1.0, 0.9607843137254902, 0.9607843137254902),),"green": ((0.0, 0.5333333333333333, 0.5333333333333333),(1.0, 0.15294117647058825, 0.15294117647058825),),"blue": ((0.0, 0.8980392156862745, 0.8980392156862745),(1.0, 0.3411764705882353, 0.3411764705882353),),"alpha": ((0.0, 1, 1), (0.5, 1, 1), (1.0, 1, 1)),
}  # #1E88E5 -> #ff0052
red_blue_solid = LinearSegmentedColormap("RedBlue", cdict1)
f = pl.figure(figsize=(5, 5))
pl.scatter(shap_embedded[:, 0],shap_embedded[:, 1],c=shap_values[:1000, :].sum(1).astype(np.float64),linewidth=0,alpha=1.0,cmap=red_blue_solid,
)
cb = pl.colorbar(label="Log odds of making > $50K", aspect=40, orientation="horizontal")
cb.set_alpha(1)
cb.outline.set_linewidth(0)
cb.ax.tick_params("x", length=0)
cb.ax.xaxis.set_label_position("top")
pl.gca().axis("off")
pl.show()


在这里插入图片描述

for feature in ["Relationship", "Capital Gain", "Capital Loss"]:f = pl.figure(figsize=(5, 5))pl.scatter(shap_embedded[:, 0],shap_embedded[:, 1],c=X[feature].values[:1000].astype(np.float64),linewidth=0,alpha=1.0,cmap=red_blue_solid,)cb = pl.colorbar(label=feature, aspect=40, orientation="horizontal")cb.set_alpha(1)cb.outline.set_linewidth(0)cb.ax.tick_params("x", length=0)cb.ax.xaxis.set_label_position("top")pl.gca().axis("off")pl.show()


在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

训练每棵树只有两个叶子的模型,因此特征之间没有交互项

强制模型没有交互项意味着某个特征对结果的影响不依赖于任何其他特征的值。 这反映在下面的 SHAP 相关图中,因为没有垂直扩展。 垂直分布反映了一个特征的单个值可能对模型输出产生不同的影响,具体取决于个体呈现的其他特征的上下文。 然而,对于没有交互项的模型,无论个体可能具有哪些其他属性,特征总是具有相同的影响。

与传统的部分相关图相比,SHAP 相关图的优点之一是能够区分具有交互项和不具有交互项的模型。 换句话说,SHAP 相关图通过给定特征值处散点图的垂直方差给出了交互项大小的概念。

# train final model on the full data set
params = {"eta": 0.05,"max_depth": 1,"objective": "binary:logistic","subsample": 0.5,"base_score": np.mean(y_train),"eval_metric": "logloss",
}
model_ind = xgboost.train(params,d_train,5000,evals=[(d_test, "test")],verbose_eval=100,early_stopping_rounds=20,
)
[0]	test-logloss:0.54113
[100]	test-logloss:0.35499
[200]	test-logloss:0.32848
[300]	test-logloss:0.31901
[400]	test-logloss:0.31331
[500]	test-logloss:0.30930
[600]	test-logloss:0.30619
[700]	test-logloss:0.30371
[800]	test-logloss:0.30184
[900]	test-logloss:0.30035
[1000]	test-logloss:0.29913
[1100]	test-logloss:0.29796
[1200]	test-logloss:0.29695
[1300]	test-logloss:0.29606
[1400]	test-logloss:0.29525
[1500]	test-logloss:0.29471
[1565]	test-logloss:0.29439
shap_values_ind = shap.TreeExplainer(model_ind).shap_values(X)

请注意,下面的交互颜色条对于该模型来说没有意义,因为它没有交互。

for name in X_train.columns:shap.dependence_plot(name, shap_values_ind, X, display_features=X_display)
invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

这篇关于SHAP(五):使用 XGBoost 进行人口普查收入分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/451224

相关文章

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.