[原创]C++98升级到C++20的复习旅途-从汇编及逆向角度去分析“constexpr“关键字

本文主要是介绍[原创]C++98升级到C++20的复习旅途-从汇编及逆向角度去分析“constexpr“关键字,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[简介]
常用网名: 猪头三
出生日期: 1981.XX.XX
QQ: 643439947
个人网站: 80x86汇编小站 https://www.x86asm.org
编程生涯: 2001年~至今[共22年]
职业生涯: 20年
开发语言: C/C++、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python
开发工具: Visual Studio、Delphi、XCode、Eclipse、C++ Builder
技能种类: 逆向 驱动 磁盘 文件
研发领域: Windows应用软件安全/Windows系统内核安全/Windows系统磁盘数据安全/macOS应用软件安全
项目经历: 磁盘性能优化/文件系统数据恢复/文件信息采集/敏感文件监测跟踪/网络安全检测

[序言]
最近在努力地学习C++20的相关知识点, 给自己订下一个小目标: 把自身已掌握的陈旧C++98, C++03逐步升级到C++20. 以适应现代C++开发的要求. 在学习和复习的过程中, 顺便记录疑惑点.

[新增][constexpr]
C++11引入了constexpr关键字来声明变量, 这种变量可在编译时求值并最终生成一个常量. 由于不会产生运行时开销, 所以编译能执行额外的优化来提高应用程序的性能.

[什么是"编译时", 什么是"运行时"]
要了解"constexpr"的作用前提是, 一定要弄清楚两个概念细节"编译时"和"运行时".

"编译时": 分析和解析源代码文件的过程, 比如语法检查, 词法分析, 优化代码...
"运行时": 程序的运行过程中

理解这个两个概念之后就很好理解下面的代码了.

比如想要一个求平方函数constexpr_fun_Square()在"编译时"就运行起来, 那么就需要在函数前面添加"constexpr"关键字

// 编译时执行函数 (求平方)
constexpr int constexpr_fun_Square(int int_param_X) {return  int_param_X * int_param_X ;
}

比如想要一个求平方函数fun_Square()在程序启动之后才能执行, 那么就按照正常的函数声明即可.

// 运行时执行函数 (求平方)
int fun_Square(int int_param_X) {return  int_param_X * int_param_X ;
}

[在代码中适当的引用"编译时"代码, 为什么会提升应用程序的性能呢?]
要理解这个核心, 可以通过逆向分析, 观察"编译时"代码和"运行时"代码的差异.

1> 首先启动相关的C/C++的开发工具(我使用的是 C++ Builder 12), 创建一个C++命令控制台程序, 把如下代码整合到新建的项目中, 然后编译运行.

#include <iostream>
#include <locale>// 编译时执行函数 (求平方)
constexpr int constexpr_fun_Square(int int_param_X) {return  int_param_X * int_param_X ;
}// 运行时执行函数 (求平方)
int fun_Square(int int_param_X) {return  int_param_X * int_param_X ;
}int _tmain(int argc, _TCHAR* argv[])
{// 1> 把编译时结果赋值给编译时变量constexpr int int_Square_A = constexpr_fun_Square(5) ;// 2> 把运行时结果赋值给运行时变量int int_Square_C = fun_Square(5);// 3> 把编译时结果赋值给运行时变量int int_Square_B = constexpr_fun_Square(5) ;}

2> 对"constexpr int int_Square_A = constexpr_fun_Square(5) ;"行下断点之后, 以Debug模式启动运行
3> 当程序被断下来之后, 就切换到汇编指令模式, 得到如下汇编代码.

File1.cpp.15: int _tmain(int argc, _TCHAR* argv[])
005814F0 55               push ebp
005814F1 89E5             mov ebp,esp
005814F3 83EC28           sub esp,$28
005814F6 8B450C           mov eax,[ebp+$0c]
005814F9 8B4D08           mov ecx,[ebp+$08]
005814FC BA05000000       mov edx,$00000005
00581501 C745FC00000000   mov [ebp-$04],$00000000
File1.cpp.18: constexpr int int_Square_A = constexpr_fun_Square(5) ;
00581508 C745F819000000   mov [ebp-$08],$00000019 // 1> "编译时"得到了优化
File1.cpp.21: int int_Square_C = fun_Square(5);
0058150F C7042405000000   mov [esp],$00000005
00581516 8945EC           mov [ebp-$14],eax
00581519 894DE8           mov [ebp-$18],ecx
0058151C 8955E4           mov [ebp-$1c],edx
0058151F E8ACFFFFFF       call fun_Square(int)  // 2> 正常调用, 因为fun_Square()函数是运行时执行
00581524 B905000000       mov ecx,$00000005
00581529 8945F4           mov [ebp-$0c],eax
File1.cpp.24: int int_Square_B = constexpr_fun_Square(5) ;
0058152C C7042405000000   mov [esp],$00000005
00581533 894DE0           mov [ebp-$20],ecx
00581536 E80D000000       call constexpr_fun_Square(int) // 3> "编译时"没有优化
0058153B 8945F0           mov [ebp-$10],eax
File1.cpp.26: }

通过观察如上的汇编代码, 惊奇的发现 "constexpr int int_Square_A = constexpr_fun_Square(5) ;" 这段代码并没有调用constexpr_fun_Square()函数, 而是直接赋值, 效果相当于如下写法:

constexpr int int_Square_A = constexpr_fun_Square(5) ;
等价于
const int int_Square_A = 25;
且等价于汇编代码
00581508 C745F819000000   mov [ebp-$08],$00000019

这意味着什么?意味着这个程序运行的时候少了调用constexpr_fun_Square(5) 的环节, 那继续意味着什么? 就是大大提升了程序的运行效率.

[不要开心, 下面一个重要的细节: 3> 把编译时结果赋值给运行时变量]
当程序如果运行到如下代码, 又会发生什么情况?:

// 3> 把编译时结果赋值给运行时变量
int int_Square_B = constexpr_fun_Square(5) ;

找到并观察对应的汇编代码

0058152C C7042405000000   mov [esp],$00000005
00581533 894DE0           mov [ebp-$20],ecx
00581536 E80D000000       call constexpr_fun_Square(int)

结果发现, 不是想象中那么美好,  程序调用(call) constexpr_fun_Square(int)这个函数, 没有提升运行效率,为什么会这样呢?这是因为int_Square_B变量并不是constexpr变量, 因此编译器没有针对它进行"编译时"优化.

[结尾]
这是一个全新的角度来分析和理解constexpr关键字的作用, 只有真正通过逆向观察, 才能有更深地体会, 更容易理解书本上的文字描述. 希望大家喜欢这篇文章, 如果有对文章有更多的疑问, 可以留言, 我会一一认真回复的.

[截图欣赏]

这篇关于[原创]C++98升级到C++20的复习旅途-从汇编及逆向角度去分析“constexpr“关键字的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/450918

相关文章

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3